The Geometry of Contact Pseudo-Slant Submanifolds of a (κ,µ)-Contact Metric Manifold
Keywords:
(κ,μ)− contact metric manifolds, contact pseudo-slant submanifolds, totally umbilical, mixed geodesic
Abstract
In this paper, The geometry of contact pseudo-slant submanifolds of a (κ,μ)−contact metric manifold have been studied. The necessary and sufficient conditions for a submanifolds to be a contact pseudo- slant submanifolds of a (κ,μ)−contact metric manifold are given.
References
[1] M.Atçeken and S.Dirik , On the geometry of pseudo-slant submanifold of a Kenmotsu manifold, Gulf Journal of Mathematics , 2(2)(2014),51-66.
[2 D. E. Blair, Contact Manifolds in Riemannian Geometry: Lecture Notes in Mathematics, 509, Springer,
Berlin (1976).
[3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston (2002).
[4] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition,
Israel Journal of Mathematics 91, (1995), 189-214.
[5] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds,
Glasgow Mathematical Journal, 42, (2000), 125-138.
[6] A. Carriazo, New Devolopments in Slant Submanifolds Theory, Narosa publishing House, New Delhi,
India, (2002).
[7] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (κ,μ)-space forms, Mediterranean Journal of Mathematics, 10, (2013), 475-496, doi: 10.1007/s00009-012-0196-2.
[8] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, (1990).
[9] B.Y. Chen, Slant immersions, Bulletin of the Australian Mathematical Society, 41, (1990), 135-147.
[10] U.C. De and A. Sarkar, On Pseudo-slant submanifolds of trans-Sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 60, 1(2011), 1-11, doi: 10.3176/proc.2011.1.01.
[11] S. Dirik, M. Atçeken, Pseudo-slant submanifolds in Cosymplectic space forms, Acta Universitatis Sapientiae: Mathematica, 8, 1(2016), 53-74, doi: 10.1515/ausm-2016-0004.
[12] S. Dirik, M. Atçeken, ¨U . Yildirim, Pseudo-slant submanifold in Kenmotsu space forms, Journal of Advances in Mathematics, 11, 10(2016), 5680-5696.
[13] V. A. Khan and M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian Journal of püre and applied Mathematics, 38, 1(2007), 31-42.
[14] M. A. Khan, Totally umbilical Hemi-slant submanifolds of Cosymplectic manifolds, Mathematica
Aeterna, 3, 8(2013), 645-653.
[15] T. Koufogiorgos, Contact Riemannian manifolds with constant
[2 D. E. Blair, Contact Manifolds in Riemannian Geometry: Lecture Notes in Mathematics, 509, Springer,
Berlin (1976).
[3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston (2002).
[4] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition,
Israel Journal of Mathematics 91, (1995), 189-214.
[5] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds,
Glasgow Mathematical Journal, 42, (2000), 125-138.
[6] A. Carriazo, New Devolopments in Slant Submanifolds Theory, Narosa publishing House, New Delhi,
India, (2002).
[7] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (κ,μ)-space forms, Mediterranean Journal of Mathematics, 10, (2013), 475-496, doi: 10.1007/s00009-012-0196-2.
[8] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, (1990).
[9] B.Y. Chen, Slant immersions, Bulletin of the Australian Mathematical Society, 41, (1990), 135-147.
[10] U.C. De and A. Sarkar, On Pseudo-slant submanifolds of trans-Sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 60, 1(2011), 1-11, doi: 10.3176/proc.2011.1.01.
[11] S. Dirik, M. Atçeken, Pseudo-slant submanifolds in Cosymplectic space forms, Acta Universitatis Sapientiae: Mathematica, 8, 1(2016), 53-74, doi: 10.1515/ausm-2016-0004.
[12] S. Dirik, M. Atçeken, ¨U . Yildirim, Pseudo-slant submanifold in Kenmotsu space forms, Journal of Advances in Mathematics, 11, 10(2016), 5680-5696.
[13] V. A. Khan and M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian Journal of püre and applied Mathematics, 38, 1(2007), 31-42.
[14] M. A. Khan, Totally umbilical Hemi-slant submanifolds of Cosymplectic manifolds, Mathematica
Aeterna, 3, 8(2013), 645-653.
[15] T. Koufogiorgos, Contact Riemannian manifolds with constant
Published
2022-12-31
How to Cite
Dirik, S., & Cetin, V. (2022). The Geometry of Contact Pseudo-Slant Submanifolds of a (κ,µ)-Contact Metric Manifold. Journal of Engineering Research and Applied Science, 11(2), 2171-2177. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/285
Section
Articles