Petrographic and geochemical characteristics of Late Cretaceous volcanic rocks in the vicinity of Avliyana (Gümüşhane, NE Turkey)

  • Alaaddin Vural Gümüşhane University
  • Abdullah Kaygusuz Gümüşhane University
Keywords: Eastern pontides, Gümüşhane, late cretaceous, whole-rock geochemistry, petrography, Avliyana volcanic rocks

Abstract

In this study, the Late Cretaceous volcanic rocks outcropping in Avliyana (Gümüşhane-NE Turkey) and its surroundings in the Southern Zone of the Eastern Pontides were investigated as petrographically and geochemically. The Late Cretaceous Avliyana volcanic rocks are basalt, basaltic andesite and andesite in composition, and are mainly composed of plagioclase, alkali feldspar, hornblende, biotite and minor augite minerals. Volcanic rocks have calc-alkaline character and have low to high-K content. They are enriched with large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in terms of elements with high-field strenght elements (HFSEs). The chondrite-normalized rare earth element distributions are concave with low to moderate enrichment (LaN/LuN=3-12), indicating that the volcanic rocks originated from the same source. Fractional crystallization and a lesser assimilation played an impotant role in the development of volcanic rocks. All these data indicate that the studied volcanic rocks were possibly derived from the partial melting of a subcontinental lithospheric mantle (SCLM), which was enriched by fluids and/or sediments from a subduction of oceanic crust.

Author Biographies

Alaaddin Vural, Gümüşhane University

Geological Engineering

Abdullah Kaygusuz, Gümüşhane University

Geological Engineering

References

[1] Kaygusuz A, Arslan M, Temizel İ, Yücel C, Aydınçakır E. U–Pb zircon ages and petrogenesis of the Late Cretaceous I-type granitoids in arc setting, Eastern Pontides, NE Turkey. Journal of African Earth Sciences 2021; 174:104040.
[2] Arslan M, Temizel I, Abdioǧlu E, Kolayli H, Yücel C, Boztuǧ D, Şen C. 40Ar-39Ar dating, whole-rock and Sr-Nd-Pb isotope geochemistry of post-collisional Eocene volcanic rocks in the southern part of the Eastern Pontides (NE Turkey): Implications for magma evolution in extension-induced origin. Contributions to Mineralogy and Petrology 2013; 166:113–142.
[3] Aslan Z, Arslan M, Temizel I, Kaygusuz A. K-Ar dating, whole-rock and Sr-Nd isotope geochemistry of calc-alkaline volcanic rocks around the Gümüşhane area: Implications for post-collisional volcanism in the Eastern Pontides, Northeast Turkey. Mineralogy and Petrology 2014; 108:245–267.
[4] Vural A, Kaygusuz A. Petrology of the Paleozoic Plutons in Eastern Pontides: Artabel Pluton (Gümüşhane, NE Turkey). Journal of Engineering Research and Applied Science 2019; 8:1216–1228.
[5] Temizel İ, Arslan M, Yücel C, Yazar EA, Kaygusuz A, Aslan Z. U-Pb geochronology, bulk-rock geochemistry and petrology of Late Cretaceous syenitic plutons in the Gölköy (Ordu) area (NE Turkey): Implications for magma generation in a continental arc extension triggered by slab roll-back. Journal of Asian Earth Sciences 2019; 171:305–320.
[6] Temizel I, Arslan M, Yücel C, Abdioğlu Yazar E, Kaygusuz A, Aslan Z. Eocene tonalite–granodiorite from the Havza (Samsun) area, northern Turkey: adakite-like melts of lithospheric mantle and crust generated in a post-collisional setting. International Geology Review 2020; 62:1131–1158.
[7] Sipahi F, Saydam Eker Ç, Akpınar İ, Gücer MA, Vural A, Kaygusuz A, Aydurmuş T. Eocene magmatism and associated Fe-Cu mineralization in northeastern Turkey: a case study of the Karadağ skarn. International Geology Review 2021:1–26.
[8] Vural A, Akpınar İ, Kaygusuz A, Sipahi F. Petrological characteristics of Eocene volcanic rocks around Demirören (Gümüşhane, NE Turkey). Journal of Engineering Research and Applied Science 2021; 10:1703–1716.
[9] Kaygusuz A, Arslan M, Sipahi F, Temizel İ. U-Pb zircon chronology and petrogenesis of Carboniferous plutons in the northern part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic magmatism and geodynamic evolution. Gondwana Research 2016; 39:327–346.
[10] Çamur MZ, Güven İH, Er M. Geochemical characteristics of the eastern Pontide volcanics: an example of multiple volcanic cycles in arc evolution. Turkish Journal of Earth Sciences 1996:123–144.
[11] Arslan M, Tüysüz N, Korkmaz S, Kurt H. Geochemistry and petrogenesis of the eastern Pontide volcanic rocks, Northeast Turkey. Chemie Der Erde Geochemistry 1997; 57:157–187.
[12] Özsayar T, Pelin S, Gedikoğlu A. Doğu Pontidlerde Kretase. KTÜ Yer Bilimleri Dergisi 1981; 1:65–114.
[13] Boztuǧ D, Erçin AI, Kuruçelik MK, Göç D, Kömür I, Iskenderoǧlu A. Geochemical characteristics of the composite Kaçkar batholith generated in a Neo-Tethyan convergence system, Eastern Pontides, Turkey. Journal of Asian Earth Sciences 2006; 27:286–302.
[14] Kaygusuz A, Siebel W, Şen C, Satir M. Petrochemistry and petrology of I-type granitoids in an arc setting: The composite Torul pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences 2008; 97:739–764.
[15] Karslı O, Dokuz A, Uysal I, Aydin F, Chen B, Kandemir R, Wijbrans J. Relative contributions of crust and mantle to generation of Campanian high-K calc-alkaline I-type granitoids in a subduction setting, with special reference to the Harşit Pluton, Eastern Turkey. Contributions to Mineralogy and Petrology 2010; 160:467–487.
[16] Bektas O, Sen C, Atici Y, Köprübasi, Koprubasi N. Migration of the Upper Cretaceous subduction-related volcanism towards the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal 1999; 34:95–106.
[17] Sipahi F. Zigana Dağı (Torul–Gümüşhane) Volkanitlerindeki Hidrotermal Ayrışmaların Mineraloji ve Jeokimyası. Karadeniz Teknik Üniversitesi, Trabzon, Türkiye, 2005.
[18] Eyüboǧlu Y. Late Cretaceous high-K volcanism in the eastern Pontide orogenic belt: Implications for the geodynamic evolution of NE Turkey. International Geology Review 2010; 52:142–186.
[19] Aydınçakır E, Kaygusuz A. Geç Kretase Yaşlı Dağbaşı (Araklı, Trabzon) Volkanitlerinin Petrografik ve Jeokimyasal Özellikleri, KD Türkiye. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü Dergisi 2012; 2:123–142.
[20] Özdamar Ş. Geochemistry and geochronology of late Mesozoic volcanic rocks in the northern part of the Eastern Pontide Orogenic Belt (NE Turkey): Implications for the closure of the Neo-Tethys Ocean. Lithos 2016; 248–252:240–256.
[21] Yücel C, Arslan M, Temizel İ, Abdioğlu Yazar E, Ruffet G. Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Research 2017; 45:65–86.
[22] Aydin F, Dokuz A, Kandemir R, Karsli O. Temporal , geochemical and geodynamic evolution of the Late Cretaceous subduction zone volcanism in the eastern Sakarya Zone , NE Turkey : implications for mantle-crust interaction in an arc setting 2020.
[23] Kaygusuz A, Saydam Eker Ç. Geochemical features and petrogenesis of Late Cretaceous subduction-related volcanic rocks in the Değirmentaşı (Torul/Gümüşhane) area, Eastern Pontides (NE Turkey). Journal of Engineering Research and Applied Science 2021; 10:1689–1702.
[24] Kandemir Ö, Akbayram K, Çobankaya M, Kanar F, Pehlivan Ş, Tok T, Hakyemez A, Ekmekçi E, Danacı F, Temiz U. From arc evolution to arccontinent collision: Late Cretaceous–middle Eocene geology of the Eastern Pontides, northeastern Turkey. Geological Society of America Bulletin 2019; 131:1889–1906.
[25] Alan İ, Balcı V, Keskin H, Altun İ, Böke N, Demirbağ H, Arman S, Elibol H, Soyakıl M, Kop A, Hanilçi N. Tectonostratigraphic characteristics of the area between Çayeli (Rize) and İspir (Erzurum). Bulletin of the Mineral Research and Exploration 2019; 158:1–29.
[26] Yücel C. Akçaabat (Trabzon) Güneyi ve Çevresindeki Kampaniyen Yaşlı Volkanik Kayaçların Petrografisi, Jeokimyası, Jeokronolojisi ve Petrojenezi. Gümüşhane Üniversitesi, Fen Bilimleri Enstitüsü Dergisi 2017; 7:79–101.
[27] Eyuboglu Y. Petrogenesis and U–Pb zircon chronology of felsic tuffs interbedded with turbidites (Eastern Pontides Orogenic Belt, NE Turkey): Implications for Mesozoic geodynamic evolution of the eastern Mediterranean region and accumulation rates of turbidite sequenc. Lithos 2015; 212–215:74–92.
[28] Eyuboglu Y, Santosh M, Yi K, Tuysuz N, Korkmaz S, Akaryali E, Dudas FO, Bektas O. The Eastern Black Sea-type volcanogenic massive sulfide deposits: Geochemistry, zircon U-Pb geochronology and an overview of the geodynamics of ore genesis. Ore Geology Reviews 2014; 59:29–54.
[29] Vural A. K-Ar dating for determining the age of mineralization as alteration product: A case study of antimony mineralization vein type in granitic rocks of Gümüşhane area, Turkey. Acta Physica Polonica A 2017; 132:792–795.
[30] Vural A, Kaygusuz A. Avliyana (Torul-Gümüşhane) Antimonit Cevherleşmesinin Jeolojisi-Mineralojisi ve Kökeninin Araştırılması. 2016.
[31] Vural A, Kaygusuz A, Dönmez H. Geological, Geochemical and Geochronological Investigation of Avliyana Antimonite Mineralization. 8th Geochemistry Symposium. 02-04 May 2018 Antalya: 2018:123–124.
[32] Vural A, Kaygusuz A, Dönmez H, Yücel C. Geochemistry and Geochronology of the Avliyana Granitoid (Gümüşhane/Ne Turkey). 71. Türkiye Jeoloji Kurultayı. Ankara, Türkiye: Türkiye Jeoloji Kurultayı; 2018:391–392.
[33] Vural A, Çiçek B. Cevherleşme Sahasında Gelişmiş Topraklardaki Ağır Metal Kirliliği. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2020; 8:1533–1547.
[34] Vural A, Çiçek B. Heavy Metal Pollution in Developed Soils on Mineralization Zone. 3rd International Conference on Advanced Engineering Technologies, 3rd International Conference on Advanced Engineering Technologies (ICADET). Bayburt, Türkiye: 2019.
[35] Topuz G, Altherr R, Kalt A, Satir M, Werner O, Schwarz WH. Aluminous granulites from the Pulur complex, NE Turkey: A case of partial melting, efficient melt extraction and crystallisation. Lithos 2004; 72:183–207.
[36] Topuz G, Altherr R, Siebel W, Schwarz WH, Zack T, Hasözbek A, Barth M, Satır M, Şen C. Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos 2010; 116:92–110.
[37] Kaygusuz A, Arslan M, Siebel W, Sipahi F, Ilbeyli N. Geochronological evidence and tectonic significance of Carboniferous magmatism in the southwest Trabzon area, eastern Pontides, Turkey. International Geology Review 2012; 54:1776–1800.
[38] Vural A, Kaygusuz A. Paleozoyik Yaşlı Artabel Plütonunun (Gümüşhane) Petrografik ve Jeokimyasal Özellikleri. 3. Uluslararası GAP Matematik-Mühendislik-Fen ve Sağılık Bilimleri Kongresi. Şanlıurfa, Türkiye: İKSAD; 2019.
[39] Kaygusuz A. Geochronological age relationships of Carboniferous Plutons in the Eastern Pontides ( NE Turkey ). Journal of Engineering Research and Applied Science 2020; 9:1299–1307.
[40] Dokuz A, Karsli O, Chen B, Uysal I. Sources and petrogenesis of Jurassic granitoids in the Yusufeli area, Northeastern Turkey: Implications for pre- and post-collisional lithospheric thinning of the eastern Pontides. Tectonophysics 2010; 480:259–279.
[41] Saydam Eker C, Sipahi F, Kaygusuz A. Trace and rare earth elements as indicators of provenance and depositional environments of Lias cherts in Gumushane, NE Turkey. Chemie Der Erde - Geochemistry 2012; 72:167–177.
[42] Pelin S. Geological study of the area southeast of Alucra (Giresun) with special reference to its petroleum potential. Trabzon, Türkiye: Karadeniz Teknik Üniversitesi Yayın No. 87; 1977.
[43] Aydınçakır E. Subduction-related Late Cretaceous high-K volcanism in the Central Pontides orogenic belt: Constraints on geodynamic implications. Geodinamica Acta 2016; 28:379–411.
[44] Temizel İ, Abdioğlu Yazar E, Arslan M, Kaygusuz A, Aslan Z. Mineral chemistry, whole-rock geochemistry and petrology of Eocene I-type shoshonitic plutons in the Gölköy area (Ordu, NE Turkey). Bulletin of the Mineral Research and Exploration 2018; 157:121–152.
[45] Kaygusuz A, Gucer MA, Yucel C, Aydincakir E, Sipahi F. Petrography and crystallization conditions of Middle Eocene volcanic rocks in the Aydıntepe -Yazyurdu ( Bayburt ) area , Eastern Pontides ( NE Turkey ). Journal of Engineering Research and Applied Science 2019; 8:1205–1215.
[46] Kaygusuz A, Selvi D. Crystallization conditions and petrography of eocene volcanic rocks in the Gümüşdamla -Erikdibi area (Bayburt , NE Turkey). Journal of Engineering Research and Applied Science 2020; 9:1529–1537.
[47] Topuz G, Okay AI, Altherr R, Schwarz WH, Siebel W, Zack T, Satir M, Sen C. Post-collisional adakite-like magmatism in the Agvanis Massif and implications for the evolution of the Eocene magmatism in the Eastern Pontides (NE Turkey). Lithos 2011; 125:131–150.
[48] Tokel S. Doğu Karadeniz bölgesinde Eosen yaşlı kalkalkalen andezitler ve jeotektonizma. Türkiye Jeoloji Kurultayı Büllteni 1977; 20:49–54.
[49] Kaygusuz A, Arslan A, Siebel W, Şen C. Geochemical and Sr-Nd Isotopic Characteristics of Post-Collisional Calc-Alkaline Volcanics in the Eastern Pontides (NE Turkey). Turkish Journal of Earth Sciences 2011; 20:137–159.
[50] Kaygusuz A, Merdan-Tutar Z, Yucel C. Mineral chemistry, crystallization conditions and petrography of Cenozoic volcanic rocks in the Bahçecik (Torul/Gumushane ) area, Eastern Pontides ( NE Turkey ). Journal of Engineering Research and Applied Science 2017; 6:641–651.
[51] Kaygusuz A, Sahin K. Petrographical , geochemical and petrological characteristics of Eocene volcanic rocks in the Mescitli area , Eastern Pontides ( NE Turkey ). Journal of Engineering Research and Applied Science 2016; 5:473–486.
[52] Temizel I, Arslan M, Ruffet G, Peucat JJ. Petrochemistry, geochronology and Sr-Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: Implications for extension-related origin and mantle source characteristi. Lithos 2012; 128–131:126–147.
[53] Karslı O, Chen B, Aydin F, Şen C. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dölek and Sariçiçek Plutons, Eastern Turkey: Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting. Lithos 2007; 98:67–96.
[54] Kaygusuz A, Öztürk M. Geochronology, geochemistry, and petrogenesis of the Eocene Bayburt intrusions, Eastern Pontide, NE Turkey: implications for lithospheric mantle and lower crustal sources in the high-K calc-alkaline magmatism. Journal of Asian Earth Sciences 2015; 108:97–116.
[55] Vural A, Kaygusuz A. Geochronology, petrogenesis and tectonic importance of Eocene I-type magmatism in the Eastern Pontides, NE Turkey. Arabian Journal of Geosciences 2021; 14:467.
[56] Kaygusuz A, Yücel C, Arslan M, Sipahi F, Temizel İ, Çakmak G, Güloğlu ZS. Petrography, mineral chemistry and crystallization conditions of Cenozoic plutonic rocks located to the north of Bayburt (Eastern Pontides, Turkey). Bulletin of the Mineral Research and Exploration 2018; 157:75–102.
[57] Kaygusuz A, Yücel C, Arslan M, Temizel İ, Yi K, Jeong Y-J, Siebel W, Sipahi F. Eocene I-type magmatism in the Eastern Pontides, NE Turkey: Insights into magma genesis and magma-tectonic evolution from whole-rock geochemistry, geochronology and isotope systematics. International Geology Review 2020.
[58] Aydin F, Karslı O, Chen B. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos 2008; 104:249–266.
[59] Yücel C. Geochronology, geochemistry, and petrology of adakitic Pliocene–Quaternary volcanism in the Şebinkarahisar (Giresun) area, NE Turkey. International Geology Review 2019; 61:754–777.
[60] Güven İ. Doğu Pontidlerin 1/25000 Ölçekli Kompilasyonu. Ankara: MTA Genel Müdürlüğü; 1993.
[61] Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous rocks. Blackwell Scientific Publications, Oxford, U.K.; 1989.
[62] Winchester JA, Floyd PA. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 1977; 20:325–343.
[63] Irvine TN, Baragar WRA. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 1971; 8:523–548.
[64] Peccerillo A, Taylor SR. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 1976; 58:63–81.
[65] Sun SS, McDonough WF. Chemical and Isotope Systematics of Oceanic Basalts; Implication for Mantle Compositionsand Processes. In: Saunders AD, Nory MJ (eds.), Magmatismin the Ocean Basins. Geological Society of London, Special Publication, 42; 1989:313–345.
[66] Taylor SR, McLennan SM. The Continental Crust; its Composition and Evolution Geoscience Text. Blackwell Scientific Publications, Oxford, U.K.; 1985.
[67] Pearce JA, Cann JR. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 1973; 19:290–300.
[68] Drummond MS, Defant M. J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. Journal of Geophysical Research 1990; 95:21503–21521.
[69] Hoffmann AW. Chemical differentiation of the Earth. The relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters 1988; 90:297–314.
[70] Schmidberger SS, Hegner E. Geochemistry and isotope ststematics of calc-alkaline volcanic rocks from the Saar-Nahe basin (SW Germany)-implications for Late Variscan orogenic development. Contributions to Mineralogy and Petrology 1999; 135:373–385.
[71] Frey FA, Green D, Roy S. Integrated models of basalt of petrogenesis, a study of quartz tholeiites to olivine melilitites from south Australia utilizing geochemical and experimental petrological data. Journal of Petrology 1978; 19:463–513.
[72] Pearce JA. Role of the sub-continental lithosphere in magma genesis at active continental margins. Continental Basalts and Mantle Xenoliths 1983:230–249.
[73] Guo F, Li H, Fan W, Li J, Zhao L, Huang M, Xu W. Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos 2015; 224–225:46–60.
[74] Jahn BM, Wu FY, Lo CH. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, Central China. Chemical Geology 1999; 157:119–146.
[75] Smith EI, Sanchez A, Walker JD, Wang K. Geochemistry of mafic magmas in the Hurricane Volcanic field, Utah: implications for small- and large-scale chemical variability of the lithospheric mantle. Journal of Geology 1999; 107:433–448.
[76] Churikova T, Dorendorf F, Worner G. Sources and fluids in the mantle wedge below Kamchatka, Evidence from across-arc geochemical variation. Journal of Petrology 2001; 42:1567–1593.
[77] Elburg MA, Bergen MV, Hoogewerff J, Foden J, Vroon P, Zulkarnain I, Nasution A. Geochemical trends across an arc-continent collision zone: magma sources and slab-wedge transfer processes below the Pantar Strait volcanoes, Indonesia. Geochimica et Cosmochimica Acta 2002; 66:2771–2789.
[78] Condie KC, Frey BA, Kerrich R. The 1.75-Ga Iron King Volcanics in westcentral Arizona: a remnant of an accreted oceanic plateau derived from a mantle plume with a deep depleted component. Lithos 2002; 64:49–62.
[79] Zhao D, Lei J, Inoue T, Yamada A, Gao S. Deep structure and origin of the Baikal rift zone. Earth and Planetary Science Letters 2006; 243:681–691.
Published
2021-12-31
How to Cite
Vural, A., & Kaygusuz, A. (2021). Petrographic and geochemical characteristics of Late Cretaceous volcanic rocks in the vicinity of Avliyana (Gümüşhane, NE Turkey). Journal of Engineering Research and Applied Science, 10(2), 1796-1810. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/257
Section
Articles

Most read articles by the same author(s)

1 2 > >>