Electron Transport Parameters and Electrical Discharges Simulated by the Monte Carlo Method in the SF6

  • Abderrahmane Settaouti Oran University of Science and Technology
Keywords: Monte Carlo simulation; transport parameters; Discharge; SF6; Streamer; Corona.

Abstract

Sulphur hexafluoride (SF6) is extensively used in the field of electric power apparatus and high voltage engineering because of its high dielectric strength. The electron swarm parameters in attaching gases have several applications. It is important for gaseous insulation in power apparatuses, for optimisation of gaseous insulating systems and the application of plasma to understand the mechanisms of the electric discharge processes in gases. However, the calculation of physical parameters for the electrical discharges is very difficult and complicated; numerical simulation of transport parameters of charged particles and the development processes for streamer and corona discharges in gas is used. The present work is to analysis the electron swarm parameters and the electric field characteristics of streamer and corona discharges using a kinetic method. The electric discharge properties in SF6 gas, the initiation and propagation of the streamer and corona discharge in a highly non-uniform electric field as function of the time were studied. The electron transport parameters in SF6 were calculated by the Monte Carlo method.

Author Biography

Abderrahmane Settaouti, Oran University of Science and Technology

Electrotechnics Department

Oran, Algeria

References

. J.Y. Kim, I. Kaganovich and H.C. Lee, Review of the gas breakdown physics and nanomaterial-based ionization gas sensors and their applications, Plasma Sources Sci. Technol. 31 (2022) 033001.

. J. Nishimura, K. Takahashi, K. Takaki, S. Koide, M. Suga, T. Orikasa, Y. Teramoto, T. Uchino, Removal of ethylene and by-products using dielectric barrier discharge with Ag nanoparticle-loaded zeolite for keeping freshness of fruits and vegetables, Trans. Mat. Res. Soc. Japan. 41 (2016) 41-45.

. R.M.A. Velásquez, Insulation failure caused by special pollution around industrial environments, Engineering Failure Analysis 102 (2019) 123–135.

. Y. Si, Y. Yang, M. Martel, L. Zhang, S. Kirychuk, B. Predicala, H. Guo, Characterization of electrical current and liquid droplets deposition area in a capillary electrospray, Results in Engineering 9 (2021) 100206.

. C. Lee, J. Kim, J. Yoon, Inactivation of MS2 bacteriophage by streamer corona discharge in water, Chemosphere 82 (2011) 1135–1140.

. A. Božovic, K. Tomaševic, N. Benbettaieb, F. Debeaufort, Influence of surface corona discharge process on functional and antioxidant properties of bio-Active coating applied onto PLA films, Antioxidants 12 (2023) 10.3390.

. L. Zhao, L. Xie, C. Liu, L. Gao, J. Qu, H. Zhang, Y. Liu, Corona current and audible noise characteristics of HVDC transmission lines and their relationship at high-altitude, IET Gener. Trans. Distrib. 1 (2023) 10.1049/gtd2.12832.

. S. Wilczek, J. Schulze, R. P. Brinkmann, Z. Donkó, J. Trieschmann, T. Mussenbrock, Electron dynamics in low pressure capacitively coupled radio frequency discharges, J. Appl. Phys. 127 (2020) doi: 10.1063/5.0003114.

. W. Yang, X. Meng, Q. Zhou, Z. Dong, Boltzmann equation studies on electron swarm parameters in Townsend breakdown of copper vapor plasma using independently assessed electron-collision cross sections, AIP Advances. 9 (2019) 10.1063/1.5048982.

. A. P. Jovanovic, M. N. Stankov, V. Lj. Markovic, S. N. Stamenkovic, Simulation of the statistical and formative time delay of Townsend-mechanism-governed breakdown in argon at low pressure, Contrib. Plasma Phys. (2023) 10.1002/ctpp.202200161.

. M. Zhang, H. Zhang, Prediction of the breakdown voltage and breakdown area of gas switches based on ionization integral, AIP Advances. 13 (2023) 10.1063/5.0121607.

. J. Paz-Martín, A. Schüller, A. Bourgouin, D. M. González-Castaño, N. Gómez-Fernández, J. Pardo-Montero, F. Gómez, Numerical modeling of air-vented parallel plate ionization chambers for ultra-high dose rate applications, Physica Medica 103 (2022) 147–156.

. A. Tentori , A. Colaïtis , D. Batani , 3D Monte-Carlo model to study the transport of hot electrons in the context of inertial confinement fusion. Part II, Matter and Radiation at Extremes. 7 (2022) 10.1063/5.0103632.

]. L. N. Mai, T. H. Vu, T. X. Dinh, H. D. Vu, C. D. Tran, V. T. Dau, H. K. Ngo, Numerical study of electrohydrodynamic atomization considering liquid wetting and corona discharge effects, Phys. Fluids. 35 (2023) 10.1063/5.

. X. Zhang, J. Wang, F. Wang, W. Fan, Particle simulation of positive streamer discharges on surface of DC transmission conductors with coating materials, IEEE Trans. Plasma Science. 50 (2022) 3751-3759.

. V. F. Tarasenkoa, E. Kh. Bakshta, E. A. Sosnina, A. G. Burachenkoa, V. A. Panarina, V. S. Skakuna, Characteristics of a pulse-periodic corona discharge in atmospheric Air, Plasma Phys. Rep. 44 (2018) 520-532.

. S. H. Nam, H. Rahaman, H. Heo, S. S. Park, J. W. Shin, J. H. So, W. Jang, Empirical analysis of high pressure SF6 gas breakdown strength in a spark gap switch, IEEE Trans. Diel. Elect. Ins. 16 (2009) 1106-1110.

. M. Radmilović-Radjenović, B. Radjenović, Theoretical studies of the electrical discharge characteristics of sulfur hexafluoride, J Electr Eng Technol. 12 (2017) 288-294.

. Y. An, K. Yin, T. Huang, Y. Hu, C. Ma, M. Yang, B. An, D. Chen, Study on the insulation performance of SF6 gas under different environmental factors, Frontiers in Phys. (2022) 820036.

. R. Zhang, L. Wang, J. Liu, Z. Lian, Numerical simulation of breakdown properties and streamer development processes in SF6/CO2 mixed gas, AIP Advances. 12 (2022) 015003.

. C. Ding, Q. Ding, Z. Wang, Y. Zhou, C. Chen, Comparison of algorithms for predicting plasma physical parameters of SF6-Cu mixtures at local thermodynamic equilibrium state via machine learning, AIP Advances. 11 (2021) 115102.

. P. Priyadarshi, N. Neophytou, Computationally efficient Monte Carlo electron transport algorithm for nanostructured thermoelectric material configurations, J. Appl. Phys. 133 (2023) 054301.

. A. Settaouti, Monte Carlo simulation of electron swarm parameters in O2, Eur. Phys. J. Appl. Phys. 37 (2007) 335-341.

. A. Settaouti, Monte Carlo simulation of avalanche formation and streamer discharge, Electr Eng 92 (2010) 35-42.

. A. Settaouti, Numerical simulation of the formation and propagation of streamer, International Journal of Modern Physics C. 18 (2007) 957-971.

. A. Settaouti, Characterization of point-plane corona discharge in oxygen with Monte Carlo method, Physics Journal. 4 (2018) 1-8.

. A. Settaouti, Numerical simulation of corona discharge in N2, J. Electr. 65 (2007), 625-630.

. A. Komuro, R. Ono, T. Oda, Effects of pulse voltage rise rate on velocity, diameter and radical production of an atmospheric-pressure streamer discharge, Plasma Sources Sci. Technol. 22 (2013) 045002.

. B. Qi, D. Yu, Numerical simulation of the negative streamer propagation initiated by free metallic particle in N2/O2 mixtures under non-uniform field, Processes. 12 (2024) 1554.

W.J. Yi, P.F. Williams, Experimental study of streamers in pure N2 and N2/O2 mixtures and a13cm gap, J. Phys. D: Appl. Phys. 35 (2002) 205-218.

F. Grange, N. Soulem, J.F. Loiseau, N. Spyrou, Numerical and experimental determination of ionizing front velocity in a DC point-to-plane corona discharge, J. Phys. D. Appl. Phys. 28 (1995) 1619-1629.

P. Tardiveau, E. Marode, A. Agneray, Tracking an individual streamer branch among others in a pulsed induced discharge, J. Phys. D: Appl. Phys. 35 (2002) 2823-2829.

. N.L. Aleksandrov, E.M. Bazelyan, Step propagation of a streamer in an electronegative Gas, J. Exp. Theo. Phys. 91 (2000) 724-735.

. S.I. Yakovlenko, The velocity of streamer propagation toward anode and cathode in He, Xe, N2, and SF6, Techn. Phys. Lett. 30 (2004) 354-357.

Published
2024-12-30
How to Cite
Settaouti, A. (2024). Electron Transport Parameters and Electrical Discharges Simulated by the Monte Carlo Method in the SF6. Journal of Engineering Research and Applied Science, 13(2), 2597-2607. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/362
Section
Articles