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Abstract

In this paper, we present an approach to predict carbon emissions and renewable energy consumption using artificial neural
network (ANN). To determine the model relationships between the input variables and the expected carbon emissions and
energy consumption, a multilayer forward ANN is used. Experimental results demonstrate that proposed ANN model
provides accurate results between predicted and actual values. The results of this study may guide decision makers to select
the most efficient combination of renewable energy sources including wind, hydropower and solar, and conventional energy
sources including oil and natural gas, in order to meet the growing energy demand while reducing carbon emissions in

developing countries.
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1.Introduction

With a high growth rate in population and the rapid
economic development, energy demand in developing
countries has increased rapidly in last two decades. To
meet this energy demand, more energy resources,
specially, oil and coal, have been used [1]. As a result,
carbon dioxide (CO,) emissions, which is one of the
main reasons of climate change, have increased over
the years [1], [2]. It is estimated that total CO,
emissions in world may increase between 9%-27% by
2030, due to using existing energy sources [3]. To
decrease the growing rate of CO, emissions, especially
in developing countries, renewable energy sources
including geothermal, solar and wind, should be used
widely around the world [4].

Being one of the fastest growing country among
Organization for Economic Co-operation and
Development (OECD) members, Turkey’s energy
demand has been increasing and it is listed as 6th
largest economy among European countries. Turkey’s
electricity demand has increased with an annual growth
rate of 5.5% since 2002 [5], [6]. The electricity
consumption was 305.5 TWh in the year 2018. Due to
*Corresponding author: cinarsuna@yahoo.com

this high consumption rates, Turkey is listed one of the
world’s top 20 energy-consuming countries. [7], [8].
Based on current data, Turkey’s electricity
consumption rate in the year 2023 is predict to rise by
5, 5% to 357, 4 TWh [9].

In Turkey, most of the energy demand is satisfied by
the imported non-renewable sources, including natural
gas and oil. To reduce this energy dependency, Turkey
should create its own energy resources for a sustainable
economic growth. For developing countries, to have
sustainable economy, they should use their own
resources. Therefore, if Turkey wants to meet at least
30% of the total electricity demand from renewable
energy resources by 2023, it should increase the
renewable energy resources, not just for the sustainable
economic growth but also for reducing environmental
effects [8],[10]. Figure 1 shows the electricity
consumption using different energy sources between
years 2000 and 2018. Based on most current data
provided in 2019, the electricity production of Turkey
is listed as; 28.6%-natural gas, 22.4%-coal, 31.4%-
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hydropower, and 8.1%-wind, 1.6%-geothermal, 6.2%-
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solar energy and 1.7%- other sources. [9].
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Figure 1. Energy consumption between years 2000-2017 [7]

As it can be seen from recent data, to achieve the
sustainable development goals (SDGs) especially
SDG#13, Turkey started using alternative energy
resources, such as wind and solar energy due to their
low CO, emissions in recent years [5]. Compare to
other energy sources, wind energy is responsible for
only 0.02 to 0.04 pounds of CO, equivalent per
kilowatt-hour (CO,E/kWh); solar 0.07 to 0.2 pounds of
CO,E/kWh; geothermal 0.1 to 0.2 pounds of
CO,E/kWh; and hydroelectric between 0.1 and 0.5
pounds of CO,E/kWh. Instead, natural gas emits 0.6 to
2 pounds CO,E/kWh; coal emits between 1.4 to 3.6
pounds of CO,E/kWh [2].

Preferring wind energy due to its low CO, emissions
can be one of the reason but considering the land of
Turkey, 37% of its land has relatively high wind
energy potential, makes this energy attractive over
other renewable energy resources. Besides, available
land, Turkey has been introducing incentives for
companies who invest wind power plants. Therefore,
considering the low environmental impact and high
energy potential of the land, to satisfy growing energy
demand, wind energy can become a promising energy
resource in Turkey for the near future [11].

The purpose of this paper is to analyze the complex
relationships between variables that effect wind energy
consumption rate and CO, emissions by using the

artificial neural networks (ANN) model. This proposed
ANN model closes the research gap by contributing
followings:

e To the best of our knowledge, the proposed ANN
model is the first model that examines the effect of
nine different input variables for predicting wind
energy consumption rate and associated carbon
emissions in Turkey.

o This study includes compression of wind energy and
natural gas energy consumption cost and CO,
emissions derived from both sources to suggest a
comprehensive policy framework towards CO;
emissions reduction. Also, this study may guide
decision makers to select the most -efficient
combination of renewable energy sources including
wind, hydropower and solar, and conventional energy
sources including oil and natural gas, in order to meet
the growing energy demand in Turkey.

o In addition, the proposed method is tested with wind
energy and CO, emissions data of Turkey in 2000-
2019. Thus, this paper also provides detailed energy
data to researchers and decision makers involved in
renewable energy sector in Turkey.
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This paper is organized as follows. In section 2, we
provide the literature review. A proposed model
structure is outlined in section 3 and input parameters
are then presented in sections 3.1. In section 4, the

2.Literature Review

In literature, many studies have been completed to
analyze the relationship between emissions and energy
consumption of renewable energy resources using
conventional statistical approaches. Some of these
methods are, time series models, regression models,
econometric models, decomposition models,
integration models, ARIMA models, artificial neural-
network models, and so on. Among these techniques,
predictions with ANN technique is found to be much
more accurate which require small training datasets,
more sensitive to noise, and high capability of handling
missing data [12, 13]. Due to increasing demand for
renewable energy resources, it is important to predict
amount of energy needed for future use as well as
amount of emission reduction will be achieved by
using the renewable energy resource. Therefore, the
purpose of this paper is to analyze the complex
relationships between variables that effect CO,
emissions and alternative energy resources by using the
ANN model. In the following section, we summarize
some of the recent studies conducted using ANN for
CO, emission prediction for renewable energy
resources.

Bilgili [14] used ANN, linear and nonlinear regression
methods to estimate the electricity consumption of two
different sectors, residential and industrial, in Turkey.
In this study, four wvariables including installed
capacity, gross electricity production, population and
total subscribership were selected as independent.
Based on the results of the three methods, ANN
method gave better performance values than both
linear and nonlinear models [14].

Vinnychuk et al. [15], used the ANN to predict the
amount of emissions using the economic growth as one
of main variable for countries under the World Bank
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model results are given. Finally, in section 5, we
summarize the study findings and conclusions as well
as recommendations for future research.

classification by the income level. Also, various other
factors that have the greatest impact on the predicted
rate of CO, are analyzed in the article. Using the
results of the analysis, one select a set of independent
variables, which may provide a better prediction of the
studied parameters. This will help to make appropriate
economic decisions in order to achieve economic
growth in a sustainable development.

Heydari et al. [16] used generalized regression neural
network and grey wolf optimization method to forecast
the CO, emissions from different energy sources,
including coal, natural gas, petroleum and renewable
energies in Iran, Canada and Italy. It was observed that
the methods used are very effective to predict the CO,
emissions from different energy resources.

Mason at al. [17] used an evolutionary optimization
algorithm, covariance matrix adaptation evolutionary
strategy, to train neural networks to forecast short term
power demand, wind power generation and carbon
dioxide emission rate in Ireland. This method provided
fast convergence and more accurate predictions and
robust performance.

Hossein et al. [18] used ANN model to determine the
CO2 emissions from different energy sources. In their
study, GDP is used as an economic indicator for five
countries. The results showed the ANN model gives
accurate predicting for CO, emissions.

Khan and Khan [19] used the adaptive neuro-fuzzy
inference system model against conventional
techniques for the CO, emissions prediction. The
correlation coefficient for these two models were 0.93
for ANN and 0.69 for conventional method,
respectively. It was concluded that ANN model is more
accurate than the conventional methods.

3. Proposed Artificial Neural Network (ANN) Model Structure

ANN is a machine learning (ML) methodology that
models the information processing capabilities by

imitating the biological neural networks in the human
brain process. The basic structure of Ann consists of
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three layers, namely, input layer (entry layer), hidden
layer (mid layer) and output layer which is given by
Figure 1 [20], [15]. In the first step, the information
(independent variables) is transmitted to the network
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through the input layer. Second, the information is
processed in hidden layer, and then sent to the output
layer. In this study, backpropagation neural network is
used [21].

Hidden Layer

Output Layer

Figure 2. A typical two layer neural network

In this study, a multi-layer feed forward network was
used and proposed network consists of an input layer,
one hidden layer, and output layer. The input layer
consists of eight inputs data total energy consumption,
wind, hydropower, geothermal, natural gas, oil, coal,
electricity consumption per capita and Gross Domestic
Product (GDP-current US$) are used to estimate the

wind energy CO, emissions covered the years 2000-
2018. The hidden layer function is a nonlinear and
consists of 3 neuron. The general structure of ANN
model proposed in this study is depicted in Figure
3.70% of given data is used for learning, 15% of given
data is used for validation and 15% of given data is
used for test group.
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Figure 3. Typical processing elements of an artificial neural network

3.1 Data Set

Independent variables used in this study are total
energy consumption, renewable energy consumptions
(wind, hydropower, geothermal), natural gas, oil, coal,
electricity consumption per capita, whereas the
dependent variable is CO, emissions from wind
energy. The data set used in the analysis is gathered
from World Bank, World Development Indicators. The
raw data to be used in the development of the ANN
must be normalized to see the fluctuations more clearly
and to prevent the mistakes in the learning process. In
this study, max-min normalization techniques is used
and equation 1 is as follows:

Table 3. CO, emissions rates

XI — X—Xmin (1)

Xmax—Xmin

As it mentioned in previous section, each energy
source has different CO, emission rates (Table 3).
Based on energy consumption for each source in
Turkey, we calculated the total CO, emissions
respected to the different energy sources between years
2000-2018. Figure 4 shows the normalized input
variables and the corresponding CO, values of
different energy resources for the years 2000-2019.
The cost data for different energy production methods
was shown in Table 4.

for different energy sources [22]

Energy Source CO,
(pounds/kWh)
Wind 0.02-0.04
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Solar 0.07-0.2

Geothermal 0.1-0.2

Hydroelectric 0.1-0.5

Coal 1.4-3.6
Natural 0.6-2
0Oil 1.12

Table 4. Electricity generation costs by fuel type (cent/kWh) [11]

Power source Minimum Maximum
(cent/kWh  (cent/kwWh)

Large hydropower 3.0 13.0
Small hydropower 4.0 14.0
Wind 4.7 7.2
Geothermal 4.7 7.8
Hydraulic 52 18.9
Solar PV 28.7 31.0
Natural gas 4.3 5.4
Coal 4.5 7.0
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Figure 4. Primary energy consumption and independent variables (2000-2018)

4. Model Results

In Three different scenarios are created to determine consider wind energy CO, emissions as target variable.
the relationship between input variables and the target The results of each scenario are given in the following
variable. The summary table for the scenario analysis  section.

is given in Table 5. For the three scenarios, we

Table 5. Scenario analysis summary table

Scenario  Total Total GPD Natural Coal Oil Hyro Geoth. Wind CO,
Energy Energy Gas Consmp. Consp. Ener. (GWh) Ener.Conp. Wind
*Consp. Consp. Consp. (GWh) (GWh)  Cons. (Gwh) (MT)
per (GWh) (GWh) (GWh)
capita
(GWh)
Sneairo-1 x X X X X X X X X x-Target
Sneairo-2  x X X X X x-Target
Sneairo-3 X x-Target

*Consp. (Consumption)
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For each scenario, we pick the input variables and examine the effect of these variables to target variable. Based
on the sensitivity analysis results, we pick different input variables to see their effect on target variable. The
summary for the sensitivity analysis are given in Table 6.

Table 6. Sensitivity Analysis Results for each scenario

Wind GDP Total Electricity *Consp. per Total Electricity Hydropower Coal Natural Gas
capita *Consp.
Sensitivity-1 58.1590 15.31809 10.25802 9.83758 6.71266 6.64359 2.412205
Sensitivity-2 44341.1 13.75919 8.92315 6.83480

*Consp. (Consumption)

For the first scenario, we examine the effect of nine
variables to target wind energy CO, emission. The

result of the ANN analysis and sensitivity analysis for
this run are given in Figure 5.
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Figure 5. The results for the scenario 1

The result of the first scenario sensitivity analysis show
that wind energy consumption, geothermal
consumption rate and electricity consumption per
capita have the higher effects on wind energy CO,
emissions. It is also observed that ANN predicted
model results and actual values shows the similar
trend.

For the second scenario, based on sensitivity analysis
result of the first scenario, we examine the effect of the
most dominant variables on the target variable, which
is CO; emissions. As the wind energy consumption and
GDP are the most effective variable among the others,
for the third scenario, we use wind energy and GDP as
input variables and CO, emissions as target. The result
for the second scenario is given in Figure 6.
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Figure 6. The results for the scenario 2

For the third scenario, based on the result of the
second, scenario, it was observed that the most
dominant variable is wind energy production is the
emissions. Therefore, for the third scenario, we use

wind energy as input variable and CO, emissions as
target. The results for the third scenario is given in
Figure 7.
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Figure 7. The results for the scenario 3

The results of the third scenario suggest that wind
energy consumption has the highest effect on CO,
emissions.

Based on all three scenarios, it is clear that ANN
predicted model results and actual values shows the
similar trend for three scenarios. The correlation
coefficients between actual and predicted values for

three scenarios are 98.9, 98, 5 and 99.9, respectively.
Determination coefficients values indicate a good
match between the observed and predicted data for
these three scenarios. It is observed that the constructed
neural networks can be used to predict the amount of
CO, emissions quite well.
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In addition to these three scenarios, we examine the
effect of different input variables on wind energy
consumption rate. Wind energy is selected as target

Volume 11(1), June 2022, pp 1929-1941

variable and the rest of the parameter are selected as
input variables. The results of sensitivity analysis and
model are given in Table 7 and Figure 8.
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Figure 8. Wind energy consumption rate prediction

Table 7. Sensitivity Analysis Results for each scenario
GDP  Geothermal Hydropower

Average 223.2596  26.06253 6.61396

Based on the sensitivity analysis, it is determined that the most dominant input variable is GDP, which affects the
wind energy consumption the highest. This is expected as increasing GDP growth causes increase in total energy
consumption. Therefore, with increasing trend in GDP value, seeing an increasing trend in wind energy is

expected.

4.1 Cost and CO2 emissions comparison for renewable and non-renewable energy sources

As the most of the energy sources in Turkey, such as
natural gas, are imported from the neigboorhod
countries, it is important to use wind energy as energy
source Compare to other renewable energy resources,
wind energy produce low CO, emissions and relatively
has lower cost. To be able to compare the effect of the
wind energy and natural gas in terms of economic and
environmental, we calculate the natural gas cost and
CO, emissions using the wind energy consumption
rates for the period of 2000 to 2019. The electricity
generation costs data and emissions date are taken form
Table 3 and 4. The results are depicted in Figure 9 and

10. It can be seen that the cost of wind energy is 9%
higher than natural gas, but CO, emissions of natural
gas is higher than wind energy. Eventhough energy
cost of the wind energy is higher than the natural gas,
there are many uncertainties should be considered when
comaparing the cost data. As natural gas is imported
from other countries, there is unexpected market price
increase which Turkey has no control over it.
Therefore, with unstable energy cost, it may seems
econmically wise to import the natural gas but
strategically, it is safer to invest wind energy in long
run.
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Figure 9. Predicted CO, Emissions for Years 2000-2019
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Figure 10. Predicted Wind Energy and Natural Gas Cost for the Years 2000-2019

5.Conclusion

According to 2019 data, the total energy consumption
in Turkey reached 304.2 billion kWh, which made
Turkey among the world’s top 20 energy-consuming
countries. With this energy increase, the carbon
emissions were reached to 430 million in 2018 and this
number placed Turkey among the world ‘top 15 carbon
emitted countries [7], [8], [23]. As indicated in
previous sections, to meet the energy demand, Turkey

mostly relies on imported natural gas and oil. Due to
high volatility and uncertainty in oil and natural gas
prices, Turkey economy would become vulnerable and
this significant effects on sustainable economic growth
in long run. Countries similar to Turkey, which rely on
imported energy sources should take measure to
decrease their dependency on international energy
market. These measures are using more renewable
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energy resources and technological alternatives to
make production processes less natural gas or oil
intensive [24].

In this study, we predict wind energy consumption and
respected CO, emissions for the year’s 2000- 2019
using ANN model. The precise prediction of wind
energy consumptions and CO, emissions show that the
selected input variables are the most influential factors
on the CO, emissions. In addition, in this study we
compare the cost and CO, emissions for different
energy sources. Based on the model results, it was
concluded that even though using wind energy seems
costly, considering other factors such as increasing
energy prices or uncertain energy policies, using wind
energy is more sustainable both in economic and
environmental. The results of this study may guide
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