Experimental Investigation of the Effects of Fiber Direction and GNP Reinforcement on the Structural Behavior of CARALL FML Composites
Abstract
The design of lighter structures to reduce fuel costs and ensure environmental sustainability has become one of the primary goals for aircraft manufacturers and researchers in the aerospace industry. In this context, fiber metal laminate (FML) structures, which are distinguished by their superior fatigue resistance and mechanical properties, have gained significant attention in aerospace applications. Among the newest and most advanced types of FMLs, carbon fiber reinforced aluminum laminates (CARALL) have emerged as a focal point of research. In this study, CARALL FML composites—representing a novel member of the FML family—were fabricated with a 3/2 stacking sequence and two different fiber directions (0°–0° and 0°–90°), both with and without 0.5 wt.% Graphene Nanoplatelet (GNP) reinforcement using the hot press molding method. The fabricated specimens were subjected to tensile tests according to ASTM D3039 and three-point bending tests according to ASTM D790 standards. The results revealed that fiber direction is the most influential parameter affecting mechanical performance, while the addition of 0.5 wt.% GNP led to a reduction in both tensile and flexural strength.
References
Abd El-baky, M. A., & Attia, M. A. (2020). Experimental study on the improvement of mechanical properties of GLARE using nanofillers. Polymer Composites, 41(10), 4130–4143. https://doi.org/10.1002/pc.25699
Azimpour-shishevan, F., Akbulut, H., & Mohtadi-bonab, M. A. (2020). Synergetic effects of carbon nanotube and graphene addition on thermo-mechanical properties and vibrational behavior of twill carbon fiber reinforced polymer composites. Polymer Testing, 90(April), 106745. https://doi.org/10.1016/j.polymertesting.2020.106745
Cepeda-Jiménez, C. M., Pozuelo, M., García-Infanta, J. M., Ruano, O. A., & Carreño, F. (2008). Influence of the alumina thickness at the interfaces on the fracture mechanisms of aluminium multilayer composites. Materials Science and Engineering: A, 496(1), 133–142. https://doi.org/https://doi.org/10.1016/j.msea.2008.05.015
Dündar, Mustafa, Uygur, İlyas, & Ekici, Ergün. (2024). Optimization of low-velocity impact behavior of FML structures at different environmental temperatures using taguchi method and grey relational analysis. Journal of Composite Materials, 59(7), 885–906. https://doi.org/10.1177/00219983241301751
Esfandiar, H., Daneshmand, S., & Mondali, M. (2011). Analysis of Elastic-Plastic Behavior of Fiber Metal Laminates Subjected to In-Plane Tensile Loading. Int J Advanced Design and Manufacturing Technology, 5(1), 61–69.
Etri, H. El, Korkmaz, M. E., Gupta, M. K., Gunay, M., & Xu, J. (2022). A state-of-the-art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. International Journal of Advanced Manufacturing Technology, 123(9–10), 2965–2991. https://doi.org/10.1007/s00170-022-10277-1
Fang, Y., Sheng, D., Lin, Z., & Fei, P. (2024). Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates. Polymers, 16(2). https://doi.org/10.3390/polym16020173
Fathi, A., Liaghat, G., Sabouri, H., Chizari, M., Hadavinia, H., & Chitsaz Charandabi, S. (2021). Experimental investigation of quasi-static behavior of composite and fiber metal laminate panels modified by graphene nanoplatelets. Journal of Reinforced Plastics and Composites, 40(13–14), 518–532. https://doi.org/10.1177/0731684420985275
Heydari-Meybodi, M., Mohammadkhani, H., & Bagheri, M. R. (2017). Oblique Low-Velocity Impact on Fiber-Metal Laminates. Applied Composite Materials, 24(3), 611–623. https://doi.org/10.1007/s10443-016-9530-3
Jin, K., Wang, H., Tao, J., & Du, D. (2019). Mechanical analysis and progressive failure prediction for fibre metal laminates using a 3D constitutive model. Composites Part A: Applied Science and Manufacturing, 124, 105490. https://doi.org/https://doi.org/10.1016/j.compositesa.2019.105490
Jin, K., Wang, H., Tao, J., & Zhang, X. (2019). Interface strengthening mechanisms of Ti/CFRP fiber metal laminate after adding MWCNTs to resin matrix. Composites Part B: Engineering, 171(May), 254–263. https://doi.org/10.1016/j.compositesb.2019.05.005
Kazemi, M. E., Shanmugam, L., Yang, L., & Yang, J. (2020). A review on the hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties. Composites Part A: Applied Science and Manufacturing, 128, 105679. https://doi.org/https://doi.org/10.1016/j.compositesa.2019.105679
Khalili, S. M. R., Mittal, R. K., & Kalibar, S. G. (2005). A study of the mechanical properties of steel/aluminium/GRP laminates. Materials Science and Engineering A, 412(1–2), 137–140. https://doi.org/10.1016/j.msea.2005.08.016
Kim, C., Kim, S., Park, J., & Song, J. (2015). Fabrication and Evaluation of Mechanical Properties of CF / GNP Composites. Procedia Manufacturing, 2(February), 368–373. https://doi.org/10.1016/j.promfg.2015.07.065
Liu, C., Du, D., Li, H., Hu, Y., Xu, Y., Tian, J., Tao, G., & Tao, J. (2016). Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Composites Part B: Engineering, 97, 361–367. https://doi.org/https://doi.org/10.1016/j.compositesb.2016.05.003
Lu, B., Zhang, J., Zheng, D., Xie, J., & Zhang, L. (2023). Theoretical analysis on carbon fiber reinforced aluminum laminate under off-center impact. International Journal of Mechanical Sciences, 248, 108247. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2023.108247
Moussavi-Torshizi, S. E., Dariushi, S., Sadighi, M., & Safarpour, P. (2010). A study on tensile properties of a novel fiber/metal laminates. Materials Science and Engineering A, 527(18–19), 4920–4925. https://doi.org/10.1016/j.msea.2010.04.028
Mukesh, A. M., & Hynes, N. R. J. (2019). Mechanical properties and applications of fibre metal laminates. AIP Conference Proceedings, 2142(1), 100002. https://doi.org/10.1063/1.5122456
Ostapiuk, M., Bieniaś, J., & Surowska, B. (2018). Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers. 25(6), 1095–1106. https://doi.org/doi:10.1515/secm-2017-0180
Park, S. Y., Choi, W. J., Choi, H. S., Kwon, H., & Kim, S. H. (2010). Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995-2008). Journal of Adhesion, 86(2), 192–221. https://doi.org/10.1080/00218460903418345
Prashantha, K., Schmitt, H., Lacrampe, M. F., & Krawczak, P. (2011). Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Composites Science and Technology, 71(16), 1859–1866. https://doi.org/https://doi.org/10.1016/j.compscitech.2011.08.019
Rahman, F., Rafi, I. H., Chowdhury, S., Rohan, S. I., Wahid-Saruar, M., Haque, M. R., Gafur, M. A., & Hassan, M. (2024). Effect of fiber orientation on mechanical properties of betel nut (areca palm) stem fiber reinforced laminated polyester composites. Advances in Materials and Processing Technologies, 00(00), 1–18. https://doi.org/10.1080/2374068X.2024.2341520
Raja, S. P., & Sreenivasan, V. S. (2024). Effect of Nanoclay Addition on Mechanical and Microstructure Properties of E-Glass Fiber and AA2022 Metal Skin Reinforced Epoxy Laminates. Jom. https://doi.org/10.1007/s11837-024-06962-z
Sharma, A. P., Khan, S. H., & Parameswaran, V. (2017). Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates. Composites Part B: Engineering, 125, 259–274. https://doi.org/10.1016/j.compositesb.2017.05.072
Thirunavukkarasu, A., Shanmugasundaram, K., & Latha, G. (2024). Hybrid Composites for the Design and Development of Pressure Vessel for Underwater Applications. Defence Science Journal, 74(1), 108–118. https://doi.org/10.14429/dsj.74.19184
Tong, A., Zhang, J., Wang, D., Chen, Y., & Xie, L. (2024). Research on static tensile properties and damage mechanism of GLARE laminates. Latin American Journal of Solids and Structures, 21(11), 1–15. https://doi.org/10.1590/1679-78258122
Uygur, I. (1999). Environmentally assisted fatigue response of Al-Cu-Mg-Mn with SiC particulate metal matrix composites. Phd. Thesis, University of Wales Swansea, UK.
Uygur, I. (2004). Tensile Behavior Of Powder Metallurgy Processed (Al-Cu-Mg-Mn) /SiCp Composites. Iranian Journal of Science & Technology, 28(B2), 239–248.
Uygur, I., Evans, W., Bache, M., & Gülenç, B. (2004). The fatigue behaviour of aluminium alloy 2124 reinforced with SiC particulates. Metallofızıka I Noveıshıe Tekhnologıı, 26(7), 927–939. https://doi.org/10.1016/j.matdes.2004.09.024
Wu, G., & Yang, J.-M. (2005). The mechanical behavior of GLARE laminates for aircraft structures. JOM, 57(1), 72–79. https://doi.org/10.1007/s11837-005-0067-4
Zal, V., Sadooghi, A., Hashemi, S. J., Rahmani, K., Roohi, A. H., Khodayari, H., & Babazadeh, J. (2024). Experimental Study of Polyester/Fiberglass/Stainless Steel Fiber Metal Laminates Mechanical Properties. Arabian Journal for Science and Engineering, 49(8), 11167–11179. https://doi.org/10.1007/s13369-023-08610-1
Zhai, L. L., Ling, G. P., & Wang, Y. W. (2008). Effect of nano-Al2O3 on adhesion strength of epoxy adhesive and steel. International Journal of Adhesion and Adhesives, 28(1), 23–28. https://doi.org/https://doi.org/10.1016/j.ijadhadh.2007.03.005