Runway Intrusion Detection Using Deep Learning
Abstract
A large number of people use airports intensively for travel and transportation. However, the excess number and the traffic density can cause potential crimes at airports. With the development of technology and security management strategies, the possibility of accidents and attacks is reduced by increasing safety measures. For such reason, security systems are used to monitor the terminal and passengers and reveal any vulnerabilities. The incidents that develop or are likely to develop at airports are detected by these systems. Applications such as border violations and tracking, and prevention attempting to enter the runway during takeoff or landing are carried out around the airport. In this study, early warning systems, which are a critical issue for airport security, were examined. Focusing on object detection, image processing methods by the YOLOv10 model are introduced to prevent threats around the airport. Imaginary border violation scenarios determined by object detection and classification were evaluated. As a result, the classification success rates for tree, human, and animal (cat) were determined as 99%, 94%, and 100% for the testing dataset.
References
Kaya, A., & Kartal, M. (2021). Havalimanı güvenlik yönetiminde teknoloji ve insan [Technology and human in airport security management]. Journal of Aviation, 5(2), 298–309.
Yıldız, A., Sarıcıoğlu, P., & Soyluk, A. (2023). Havalimanlarındaki terör saldırılarına karşı alınabilecek önlemlerin mimari açıdan değerlendirilmesi [Architectural evaluation of measures against terrorist attacks at airports]. The Journal of International Social Research, 16(99).
Çoban, R., & İpek, S. (2020). Sivil havacılık sektöründe uçuş güvenlik görevlisi uygulamaları üzerine kavramsal bir araştırma [A conceptual study on air marshal practices in the civil aviation sector]. Journal of Aviation, 4(1), 89–102.
Abeyratne, R. I. R. (1994). The effects of unlawful interference with civil aviation on world peace and the social order. Transportation Law Journal, 22(3), 449–465.
Küçükönal, H. (2001). Havaalanı güvenliği ve Sabiha Gökçen uluslararası havaalanı güvenlik sistemi için bir model önerisi [Airport security and a model proposal for Sabiha Gökçen International Airport security system]. Unpublished master’s thesis, Ankara.
Young, B. E. (2003). Responsibility and liability for unlawful interference in international civil aviation. Air and Space Law, 28, 1.
Button, K., Clarke, A., Palubinskas, G., Stough, R., & Thibault, M. (2004). Conforming with ICAO safety oversight standards. Journal of Air Transport Management, 10(4), 249–255.
Wells, A. T., & Young, S. B. (2011). Airport planning and management (6th ed.). New York, NY: McGraw-Hill.
Frederickson, H. G., & LaPorte, T. R. (2002). Airport security, high reliability, and the problem of rationality. Public Administration Review, 62, 33–43.
Lykou, G., Moustakas, D., & Gritzalis, D. (2020). Defending airports from UAS: A survey on cyber-attacks and counter-drone sensing technologies. Sensors, 20(12), 3537.
Tiryaki, F. (2013). Zabıta ve özel güvenlik hizmetlerinin kontrol merkezleri yardımıyla incelenmesi, Kocaeli Uygulaması [Examination of municipal and private security services through control centers: Kocaeli case]. Unpublished master’s thesis.
Sochor, E. (1991). The politics of international aviation. London: Macmillan.
Pütz, O. (2012). From non-places to non-events: The airport security checkpoint. Journal of Contemporary Ethnography, 41(2), 154–188.
Gemici, E., & Yılmaz, H. (2019). Güvenlik stratejileri ve yönetimi açısından havacılık güvenliği [Aviation security in terms of security strategies and management]. Journal of Aviation, 3(1), 15–27.
Arcúrio, M. S., Pereira, R. R., & Arruda, F. S. (2020). Security culture in the screening checkpoint of Brazilian airports. Journal of Air Transport Management, 89, 101902.
Davis, A., & Chang, H. (2012). Airport protection using wireless sensor networks. In 2012 IEEE Conference on Technologies for Homeland Security (HST) (pp. 36–42).
Willemsen, B., & Cadee, M. (2018). Extending the airport boundary: Connecting physical security and cybersecurity. Journal of Airport Management, 12(3), 236–247.
Topak, Ö. E., Bracken-Roche, C., Saulnier, A., & Lyon, D. (2015). From smart borders to perimeter security: The expansion of digital surveillance at the Canadian borders. Geopolitics, 20(4), 880–899.
Shang, K., He, C., Zhou, J., Ling, P., Lu, X., Fu, C., & Yang, T. (2023). Optical and electrical dual-mode tactile sensor with interlinked interfaces recording normal force and slip for closed-loop robotics. Chemical Engineering Journal, 475, 146279.
Sharma, S., Shah, D., Bhavsar, R., Jaiswal, B., & Bamniya, K. (2014). Automated detection of animals in context to Indian scenario. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (pp. 334–338).
Eldem, A., Eldem, H., & Palalı, A. (2017). Görüntü işleme teknikleriyle yüz algılama sistemi geliştirme [Development of a face detection system using image processing techniques]. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 6(2), 44–48.
Yabanova, İ., & Kaya, K. (2019). Kaynak değeri olan yaban hayvanlarının görüntü işleme tekniği ile tespiti ve sayımı [Detection and counting of wildlife with economic value using image processing techniques]. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(2), 174–187.
Algur, Ö., Tümen, V., & Yıldırım, Ö. (2018). Dış ortam görüntülerindeki insan hareketlerinin hibrit derin öğrenme yöntemleri kullanarak sınıflandırılması [Classification of human movements in outdoor images using hybrid deep learning methods]. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 121–129.
Şimşek, E., Özyer, B., & Özyer, G. T. (2020). Foto-kapan görüntülerinde derin öğrenme tabanlı insan tespiti [Deep learning-based human detection in camera trap images]. Bayburt Üniversitesi Fen Bilimleri Dergisi, 3(1), 1–8.
Choubisa, T., Kashyap, M., & Chaitanya, K. K. (2018). Human crawl vs animal movement and person with object classifications using CNN for side-view images from camera. In 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 48–54).
Önal, O., & Dandıl, E. (2021). Object detection for safe working environments using YOLOv4 deep learning model. Avrupa Bilim ve Teknoloji Dergisi, 26, 343–351.
Çalışkan, D., & Demir, Ö. (2022). Derin öğrenme yöntemleri ile şüpheli davranış tespiti [Suspicious behavior detection using deep learning methods]. International Periodical of Recent Technologies in Applied Engineering, 3(1), 28–43.
Nayak, R., Behera, M. M., Pati, U. C., & Das, S. K. (2019). Video-based real-time intrusion detection system using deep-learning for smart city applications. In 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS) (pp. 1–6).
Sevi, M., & Aydın, İ. (2023). Detection of foreign objects around the railway line with YOLOv8. In Computer Science (IDAP-2023) (pp. 19–23).
Alemdar, K. D. (2024). Çift sıra parklanma durumunun nesne tespit algoritması YOLOv8 ile tespit edilmesi [Detection of double-row parking situations using YOLOv8 object detection algorithm]. Journal of the Institute of Science and Technology, 14(3), 1164–1176.
Sadik, M. N., Hossain, T., & Sayeed, F. (2024). Real-time detection and analysis of vehicles and pedestrians using deep learning. arXiv Preprint, arXiv:2404.08081.
Ultralytics. (2025, March 25). Roboflow Entegrasyonu [Roboflow integration]. Ultralytics Documentation.https://docs.ultralytics.com/tr/integrations/roboflow/
Ali, M. L., & Zhang, Z. (2024). The YOLO framework: A comprehensive review of evolution, applications, and benchmarks in object detection. Computers, 13(12), 336.
Chen, Y., Xu, H., Zhang, X., Gao, P., Xu, Z., & Huang, X. (2023). An object detection method for bayberry trees based on an improved YOLO algorithm. International Journal of Digital Earth, 16(1), 781–805.
Xiong, J., Wu, J., Tang, M., Xiong, P., Huang, Y., & Guo, H. (2024). Combining YOLO and background subtraction for small dynamic target detection. The Visual Computer, 1–10. https://doi.org/10.1007/s00371-024-03260-2
Chen, Z., Zhu, Q., Zhou, X., Deng, J., & Song, W. (2024). Experimental study on YOLO-based leather surface defect detection. IEEE Access.
Benfold, B., & Reid, I. (2011). Stable multi-target tracking in real-time surveillance video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3457–3464).