Portable UV-C Light Sterilization Cabinet
Abstract
The use of Ultraviolet C Tape kills the DNA and RNA molecules on many microbes and prevents the proliferation of microorganisms. Contaminations (contamination of disease-causing substances) on materials that come into contact with more than one patient during the day increase the risk of disease. Inadequately disinfected products, on the other hand, pass from patient to patient, increasing the risk of cross-infection. The main purpose of this study is to minimize the possibility of microbial disease spreading of materials that are used in routine treatments and whose sterilization is neglected. In addition, this portable study is suitable for use in examination rooms.
References
Santos, d. T., & de Castro, L. F. (2021). Evaluation of a portable Ultraviolet C (UV-C) device for hospital. Elsevıer, 33.
Bergman, R. S. (2021). Germicidal UV Sources and Systems †. American Society for Photobiology, 97.
Rudhart, S. A., & Gunther,F. (2022). Analysis of bacterial contamination and the. plos one, 11.
Gastmeier, P., & Groneberg, K. (2003). A cluster of nosocomial Klebsiella pneumoniae bloodstream infections in a neonatal intensive care department: Identification of transmission and intervention. elsevier, 31.
Uneke, C. J. (2014). Are non-critical medical devices potential sources of infections in healthcare facilities? Longwoods, 13-24.
Embil, J. M., & Hoban, D. (2002). Scissors: a potential source of nosocomial infection. Cambrıdge, 147-51.
Jingwen C, L. L. (2020). Teknoloji Paylaşımında yeni NCP koronavirüs dozunu öldüren UVC-led derin ultraviyole incelemesi. Hubei Shenzi Techonology Co.
Woo MH, G. A. (2012). Bağıl nem ve püskürtme ortamının viral aerosollerle yüklü filtrelerin UV dekontaminasyonu üzerindeki etkileri. Uygulama Ortamı Mikrobiol Kontaminasyon için Antiseptik
Işın uygulaması. PubMed ] [ CrossRef ] [ Google Scholar ]), 17.
Sung M, K. S. (2011). Bir evaporatif nemlendiricide mikrobiyal kontaminasyon için ultraviyole antiseptik ışınlama sistemlerinin dezenfeksiyon performansı. Pubmed, 17.
W., K. (2010). Ultraviolet germicidal irradiation handbook: UVGI for air and surface disinfection. Pubmed, Google Scholar.
Song K., M. M. (2019). Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths. pubmed, google scholar.
Quek P.H., H. J. (2006). Photoreactivation of Escherichia coli following medium-pressure ultraviolet disinfection and its control using chloramination. pubmed, 53.
Lindblad, M. (2019). Ultraviolet-C decontamination of a hospital room: Amount of UV light needed. pubmed.
Diab-El Schahawi M., Z. W. (2021). Ultraviolet disinfection robots to improve hospital cleaning: real promise or just a gimmick?. Pubmed, (1-3).
McGinn C., S. R. (2021). Exploring the applicability of robot-assisted UV disinfection in radiology. Pubmed.
Raeiszadeh M., B. A. (2020). A critical review on ultraviolet disinfection systems against COVID-19 outbreak: applicability, validation, and safety considerations. pubmed.
Lonnen J., P. K. (2014). The efficacy of Acanthamoeba cyst kill and effects upon contact lenses of a novel ultraviolet lens disinfection system. pubmed.
Flaherty, N. O., & Fenelon, L. (2015). The stethoscope and healthcare-associated infection: a snake in the grass or innocent bystander? elsevıer, 1-7.
Maluf, M. E. (2002). Stethoscope: a friend or an enemy? Scielo, 13-5.
Madar, R., Novakova, E., & Baska, T. (2005). The role of non-critical health-care tools in the transmission of nosocomial infections. Bratisl Lek Listy, 11.
Febiger, P. L. (1968). Spaulding EH. Tıbbi ve cerrahi malzemelerin kimyasal dezenfeksiyonu. In: Lawrence C BS, editör. Dezenfeksiyon, Sterilizasyon ve Koruma . [ Google Akademik ], 517–31.