Comparison of PVsyst, PVSOL and HOMER Simulation Software Results with Real Production Data of Solar Power Plants in Different Provinces of Turkey

  • Emine Erakman Dirlik Ondokuz Mayis University
  • Cenk Gezegin Ondokuz Mayis University
  • Shir Ahmad Dost Mohammadi Alberoni University
Keywords: PVSOL, PVSyst, HOMER, PV, renewable energy.

Abstract

Fotovoltaik sistemleri simüle etmek için çeşitli simülasyon yazılımları geliştirilmiştir. Araştırmacılar, mühendisler ve yatırımcılar bu simülasyon araçlarını PV enerji santralinin boyutlandırılması, fizibilite, teknik ve ekonomik analiz için kullanıyor. Bu çalışmanın amacı, Türkiye'deki araştırmacılar ve yatırımcılar için gerçek üretim verilerine en yakın simülasyon aracının sonuçlarını karşılaştırmaktır. Bu makalede Türkiye'de farklı coğrafi bölgelerde bulunan 7 adet güneş enerjisi santralinin (GES) fiili üretim verileri PVSyst, PVSOL ve HOMER yazılım sonuçlarıyla karşılaştırılmaktadır. Gerçek santrallerde kullanılan ekipmanlar, eğim açıları ve konum bilgileri gibi bazı analiz verileri üç yazılım aracına girilerek simülasyonlar yapılmıştır. Program çıktıları fiili üretim verileriyle karşılaştırılarak hangi programın Türkiye için daha anlamlı sonuçlar verdiği belirlendi. Simülasyon sonuçlarına göre yıllık sonuçlar incelendiğinde gerçek değerlere göre PVSyst'in sapma oranı -%3,4857, PVSOL'un sapma oranı %9,027 ve HOMER'ın sapma oranı %3,2238 olarak bulunmuştur. üretim verileri. Analizi yapılan bu santraller için en uygun yazılımın HOMER olduğu belirlendi. Bu çalışma, Türkiye'deki güneş enerjisi santrallerinin analizi için en uygun simülasyon yazılımının belirlenmesinde gelecekteki çalışmalara faydalı olabilir.

Author Biographies

Emine Erakman Dirlik, Ondokuz Mayis University

Samsun, Turkey

Cenk Gezegin, Ondokuz Mayis University

Electrical and Electronics Engineering

Samsun, Turkey

Shir Ahmad Dost Mohammadi, Alberoni University

Electrical and Electronics

Kapisa, Afghanistan

References

[1] IEA (2021). Erişim Tarihi: 12 Mart 2022, https://www.iea.org/countries/turkey
[2] Deniz, S. (2018). The evaluation of renewable energy potantial and policies in terms of sustainable development in Turkey. Master's Thesis. Akdeniz University Institute of Social Sciences, Department of Economics. Antalya.
[3] Duman, A. C. and Güler, Ö. (2020). Economic Analysis of Grid-Connected Residential Rooftop PV Systems in Turkey. https://doi.org/10.1016/j.renene.2019.10.157 Elsevıer Renewable Energy V.143 (2020) P.697-711
[4] Sharma, R. Gıdwanı, L. (2017). Grid Connected Solar PV System Design and Calculation By Using PV*SOL Premium Simulation Tool for Campus Hostels of RTU Kota. DOI:10.1109/ICCPCT.2017.8074315 Conference: 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT)
[5] Salehın, S., Ferdaous, M. T., Chowdhury, R. M., Shıthı, S. S., Rofı, M. S. R. B., Mohammed, M. A. (2016). Assessment of Renewable Energy Systems Combining Techno-Economic Optimization with Energy Scenario Analysis. Elsevıer Energy V.112 (2016) P. 729-741
[6] Othman,R. Hatem, T. M. (2022). Assessment of PV Technologies Outdoor Performance and Commercial Software Estimation in Hot and Dry Climates. https://doi.org/10.1016/j.jclepro.2022.130819 Journal of Cleaner Production V.340
[7] Mubarak, R., Weide Luiz, E., Seckmeyer, G. (2019). Why PV Modules Should Preferably No Longer Be Oriented to the South in the Near Future. doi:10.3390/en12234528 Energıes V.12, I.23, P.4528
[8] Özcan, H. G. Günerhan, H. Yıldırım, N. Hepbaşlı, A. (2018). A Comprehensive Evaluation of PV Electricity Production Methods and Life Cycle Energy-Cost Assessment of A Particular System. https://doi.org/10.1016/j.jclepro.2019.117883 : The 4th IEEE Conference on Power Engineering and Renewable Energy (ICPERE). Date of Conference: 29-31 October 2018
[9] Mohammadi, S. A. D. Gezegin, C. (2022). Design And Simulation Of Grid-Connected Solar PV System Using PVSYST, PVGIS And HOMER Software. International Journal Of Pioneering Technology And Engineering (IJPTE) Vol, 1, No.01, Pp. 36-41, June 2022
[10] Farıdah, L. Purwadı, A. (2018). Study and Design of Hybrid Off-Grid Power System for Communal and Administrative Load at 3 Regions in Maluku, Indonesia. DOI: 10.1109/ICPERE.2018.8739381 The 4th IEEE Conference on Power Engineering and Renewable Energy (ICPERE). Date of Conference: 29-31 October 2018
[11] Zahraee, S.M., Khalaji Assadi, M., Saidur, R. (2016). Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. http://dx.doi.org/10.1016/j.rser.2016.08.028 Elsevıer Renewable and Sustainable Energy Reviews V.66, P.617-630
[12] Taghızadegan Kalantarı, N., Ahangarı Hassas, M., Pourhosseın, K. (2018). Bibliographic Review and Comparison of Optimal Sizing Methods for Hybrid
[13] Tozzi, P. Jr. And Jo, J. (2017). A Comparative Analysis of Renewable Energy Simulation Tools: Performance Simulation Model vs. System Optimization. https://doi.org/10.1016/j.rser.2017.05.153 Elsevıer Renewable and Sustainable Energy Reviews V.80 (2017) P.390-398
[14] Benghanem, M. (2011). Optimization Of Tilt Angle For Solar Panel: Case Study For Madinah, Saudi Arabia. Applied Energy 88 (2011), 1427–1433
[15] Yu, C. Khoo, Y.S. Chai,J. Han, S. Yao, J. (2019). Optimal Orientation And Tilt Angle For Maximizing İn-Plane Solar Irradiation For PV Applications İn Japan. Sustainability 2019, 11, 2016; Doi:10.3390/Su11072016
[16] Ayara, W.A. Et. All. (2019). Optimum Angle Of Inclination For A Fixed Stand-Alone Photovoltaic: A Review. IOP Conf. Series: Journal Of Physics: Conf. Series 1299 (2019) 012021
[17] Gunerhan, H., Hepbasli, A., (2007). Determination Of The Optimum Tilt Angle Of Solar Collectors For Building Applications. Building And Environment 42, 779–783
[18] Hussein, H.M.S. Ahmad, G.E. El-Ghetany, H.H. (2004). Performance Evaluation Of Photovoltaic Modules At Different Tilt Angles And Orientations. Energy Conversation And Management 45, 2441–2452
[19] Reindl, T. And Aberle, A.G. Et. All. (2014). Optimal Orientation And Tilt Angle For Maximizing İn-Plane Solar Irradiation For PV Applications İn Singapore. IEEE Journal Of Photovoltaıcs, VOL. 4, NO. 2
[20] Cheng, C.L. Jimenez, C.S.S. Lee, M.C. (2009). Research Of BIPV Optimal Tilted Angle, Use Of Latitude Concept For South Orientated Plans. Renewable Energy 34, 1644–1650
[21] Lua, H. Zhaob, W. (2018). Effects Of Particle Sizes And Tilt Angles On Dust Deposition Characteristics Of A Ground-Mounted Solar Photovoltaic System. Applied Energy 220 (2018) 514–526
[22] Babatunde, A.A. Abbasoglu, S. Senol, M. (2018). Analysis Of The İmpact Of Dust, Tilt Angle And Orientation On Performance Of PV Plants. Renewable And Sustainable Energy Reviews 90(2018) 1017-1026.
[23] Beringer, S. Schilke, H. Lohse, I. Seckmeye, G. (2011). Case Study Showing That The Tilt Angle Of Photovoltaic Plants İs Nearly İrrelevant. Elsevier Solar Energy 85 (2011) 470-476
[24] Souza Silva, J. L. Costa, T. S. Barbosa De Melo, K. And Et. All. (2020). A Comparative Performance Of PV Power Simulation Software With An Installed PV Plant. IEEE, ISBN: 978-1-7281-5754-2/20
[25] González-Peña, D. García-Ruiz, I. Díez-Mediavilla, M. Dieste-Velasco, Alonso-Tristán, C. (2021). Photovoltaic Prediction Software: Evaluation With Real Data From Northern Spain. Appl. Sci. 2021, 11, 5025. Https://Doi.Org/10.3390/ App11115
[26] Umar, N. Bora, B. Banerjee, C. Panwar, B.S. (2018). Comparison Of Different PV Power Simulation Softwares: Case Study On Performance Analysis Of 1 MW Grid-Connected PV Solar Power Plant. Volume 7, Issue 7, Ver II, July 2018, PP 11-24
[27] Milosavljević, D.D. Kevkić, T.S. And Jovanović, S.J. (2022). Review And Validation Of Photovoltaic Solar Simulation Tools/Software Based On Case Study. Open Physics 2022; 20: 431–451
Published
2023-12-31
How to Cite
Erakman Dirlik, E., Gezegin, C., & Dost Mohammadi, S. A. (2023). Comparison of PVsyst, PVSOL and HOMER Simulation Software Results with Real Production Data of Solar Power Plants in Different Provinces of Turkey. Journal of Engineering Research and Applied Science, 12(2), 2357-2364. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/327
Section
Articles