A Comparative Study on the Cutting Performance of Uncoated, AlTiN and TiCN-Al2O3 Coated Carbide Inserts in Turning of Invar 36 Alloy

  • Mahir Akgün Aksaray University
Keywords: Invar 36, Cutting Force, Surface Roughness, Tool Wear, Power Consumption

Abstract

The present work focuses on a comparison of the performance of, a two-layer (TiCN-Al2O3) coated, the single-layer (AlTiN), and uncoated inserts in the machining of Invar 36, which is a difficult material to cut. The cutting performance of these tools has been appraised regarding cutting force (Fc), surface roughness (Ra), tool wear (Vb), and power consumption (Pc). Statistical analyzes were applied to determine the sustainable processing parameters of Invar 36. The outcomes of this study show that the two-layer (TiCN-Al2O3) coated insert performs a significant exhibiting in improving the cutting performance of Invar 36 alloy comparison with uncoated and single-layer (AlTiN) coated inserts. The tool wear is about 30% and 60% better using the two-layer (TiCN-Al2O3) coated insert than the single-layer (AlTiN) coated and uncoated inserts, respectively. The statistical analysis results, on the other hand, show that the ideal level groups for the lowest Fc, Ra, Vb, and Pc were A3B3C1, A3B3C1, A3B1C1, and A3B1C1, respectively. Moreover, the models developed to estimate the output parameters (Fc, Ra, Vb, and Pc) give successful results with high coefficients of determination (R2) of 93.18%, 98.79%, 98.05%, and 98.11%, respectively.

Author Biography

Mahir Akgün, Aksaray University

Technical Sciences Vocational School

Machine and Metal Technology

Aksaray, Turkey

References

Midilli, A.; Dincer, I.; Key strategies of hydrogen energy systems for sustainability. Int J Hydrogen Energy., 2007, 32, 511–524. https://doi.org/10.1016/J.IJHYDENE.2006.06.050

Salem, A.; Hegab, H.; Kishawy, H. A.; An integrated approach for sustainable machining processes: Assessment, performance analysis, and optimization. Sustain Prod Consum., 2021, 25, 450–470. https://doi.org/10.1016/J.SPC.2020.11.021

Jayal, A. D.; Badurdeen, F.; Dillon, O. W.; Jawahir, I. S.; Sustainable manufacturing: Modeling and optimization challenges at the product, process and system levels. CIRP J Manuf Sci Technol., 2010, 2, 144–152. https://doi.org/10.1016/J.CIRPJ.2010.03.006

López De Lacalle, L. N.; Angulo, C.; Lamikiz, A.; Sánchez, J. A.; Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. J Mater Process Technol., 2006, 172, 11–15. https://doi.org/10.1016/J.JMATPROTEC.2005.08.014

Aslan, D.; Budak, E.; Semi-analytical Force Model for Grinding Operations. Procedia CIRP, 2014, 14, 7–12. https://doi.org/10.1016/J.PROCIR.2014.03.07372.

Akgün, M.; Demir, H.; Estimation of surface roughness and flank wear in milling of Inconel 625 superalloy. Surf Rev Lett 2021, 28, 2150011. https://doi.org/10.1142/S0218625X21500116

Korkmaz, M. E.; Gupta, M. K.; Boy, M.; et al.; Influence of duplex jets MQL and nano-MQL cooling system on machining performance of Nimonic 80A. J Manuf Process., 2021, 69, 112–124. https://doi.org/10.1016/J.JMAPRO.2021.07.039

Şirin, Ş.; Yıldırım, Ç. V.; Kıvak, T.; Sarıkaya, M.; Performance of cryogenically treated carbide inserts under sustainable cryo-lubrication assisted milling of Inconel X750 alloy. Sustain Mater Technol., 2021, 29, e00314. https://doi.org/10.1016/J.SUSMAT.2021.E00314

Özbek, N. A.; Özbek, O.; Kara, F.; Statistical Analysis of the Effect of the Cutting Tool Coating Type on Sustainable Machining Parameters. J Mater Eng Perform., 2021, 30, 7783–7795. https://doi.org/10.1007/s11665-021-06066-8

Guillaume, C. E.; Invar and Elinvar. Nobel Lect Phys., 1967, 444–473.

Davis, J. R.; Alloying: Understanding the Basics. ASM International: Materials Park, 2001, OH.

Rosenberg, S. J.; Nickel and its alloys, National Bureau of Standards Monograph. Institute for Materials Research, 1968, Washington, DC.

Nickel-Iron Alloys. https://www.specialmetals.com/assets/smc/documents/alloys/nilo-nilomag/nilo-and-nilomag-alloys.pdf

Wei, K.; Yang, Q.; Ling, B.; et al.; Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting. Mater Sci Eng A, 2020, 772, 138799. https://doi.org/10.1016/J.MSEA.2019.138799

Nagayama, T.; Yamamoto, T.; Nakamura, T.; Electrodeposition of Invar Fe-Ni Alloy/SiC Particle Composite. ECS Trans., 2017, 75, 69–77. https://doi.org/10.1149/07537.0069ecst

Nagayama, T.; Yamamoto, T.; Nakamura, T.; Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the Invar composition range. Electrochim Acta, 2016, 205, 178–187. https://doi.org/10.1016/J.ELECTACTA.2016.04.089

Ratnayake, D.; Derakhshani, M.; Berfield, T. A.; Walsh, K. M.; Bistability study of buckled MEMS diaphragms. J Phys Commun 2020, 4, 105008. https://doi.org/10.1088/2399-6528/abbe5e

Corbacho, J. L.; Suárez, J. C.; Molleda, F.; Welding of invar Fe-36Ni alloy for tooling of composite materials. Weld Int., 1998, 12, 966–971. https://doi.org/10.1080/09507119809448543

Hidalgo, J.; Jiménez-Morales, A.; Barriere, T.; et al.; Mechanical and functional properties of Invar alloy for μ-MIM. Powder Metall., 2014, 57, 127–136. https://doi.org/10.1179/1743290113Y.0000000081

Ezugwu, E. O.; Wang, Z. M.; Machado, A. R.; The machinability of nickel-based alloys: a review. J Mater Process Technol., 1999, 86, 1–16. https://doi.org/10.1016/S0924-0136(98)00314-8

Asgari, H.; Salarian, M.; Ma, H.; et al.; On thermal expansion behavior of invar alloy fabricated by modulated laser powder bed fusion. Mater Des., 2018, 160, 895–905. https://doi.org/10.1016/J.MATDES.2018.10.025

Kıvak, T.; Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts. Measurement, 2014, 50, 19–28. https://doi.org/10.1016/J.MEASUREMENT.2013.12.017

Ezugwu, E. O.; Okeke, C. I.; Behavior of Coated Carbide Tools in High Speed Machining of a Nickel Base Alloy. Tribol Trans., 2002, 45, 122–126. https://doi.org/10.1080/10402000208982530

Ezugwu, E. O.; Wang, Z. M.; Okeke, C. I.; Tool Life and Surface Integrity When Machining Inconel 718 With PVD- and CVD-Coated Tools. Tribol Trans., 1999, 42, 353–360. https://doi.org/10.1080/10402009908982228

Jawaid, A.; Koksal, S.; Sharif, S.; Wear Behavior of PVD and CVD Coated Carbide Tools when Face Milling Inconel 718. Tribol Trans., 2000, 43, 325–331. https://doi.org/10.1080/10402000008982347

García, J.; Collado Ciprés, V.; Blomqvist, A.; Kaplan, B.; Cemented carbide microstructures: a review. Int J Refract Met Hard Mater., 2019, 80, 40–68. https://doi.org/10.1016/J.IJRMHM.2018.12.004

Tool-life testing with single-point turning tools. ISO 3685, 1993.

Ciftci, I.; Machining of austenitic stainless steels using CVD multi-layer coated cemented carbide tools. Tribol Int., 2006, 39, 565–569. https://doi.org/10.1016/j.triboint.2005.05.005

Korkut, I.; Donertas, M. A.; The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool–chip contact length during face milling. Mater Des., 2007, 28, 308–312. https://doi.org/10.1016/J.MATDES.2005.06.002

Bagherzadeh, A.; Budak, E.; Investigation of machinability in turning of difficult-to-cut materials using a new cryogenic cooling approach. Tribol Int., 2018, 119, 510–520. https://doi.org/10.1016/J.TRIBOINT.2017.11.033

Saleem, M. Q.; Mumtaz, S.; Face milling of Inconel 625 via wiper inserts: Evaluation of tool life and workpiece surface integrity. J Manuf Process, 2020, 56, 322–336. https://doi.org/https://doi.org/10.1016/j.jmapro.2020.04.011

Kaladhar, M.; Venkata Subbaiah, K.; Srinivasa Rao, C.;, Narayana Rao, K.; Process parameters optimisation and coatings influence on the surface quality during turning of AISI 202 austenitic stainless steel. Int J Mach Mach Mater., 2012, 11, 371–384. https://doi.org/10.1504/IJMMM.2012.047832

Kara, F.; Öztürk, B.; Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel. Sens Rev., 2019, 39, 24–33. https://doi.org/10.1108/SR-12-2017-0266

Ginting, A.; Skein, R.; Cuaca, D.; et al.; The characteristics of CVD- and PVD-coated carbide tools in hard turning of AISI 4340. Measurement, 2018, 129, 548–557. https://doi.org/10.1016/J.MEASUREMENT.2018.07.072

Özbek, O.; Saruhan, H.; The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. J Mater Res Technol., 2020, 9, 2762–2772. https://doi.org/10.1016/J.JMRT.2020.01.010

Sun, X.; Li, J.; Cameron, D.; Zhou, A.; Field monitoring and assessment of the impact of a large eucalypt on soil desiccation. Acta Geotech. 2021, https://doi.org/10.1007/s11440-021-01308-4

Cetin, M. H.; Ozcelik, B.; Kuram, E.; Demirbas, E.; Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod., 2011, 19, 2049–2056. https://doi.org/10.1016/J.JCLEPRO.2011.07.013

Özlü, B.; Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy. Surf Rev Lett., 2021 28, 2150093. https://doi.org/10.1142/S0218625X21500931

Published
2022-06-30
How to Cite
Akgün, M. (2022). A Comparative Study on the Cutting Performance of Uncoated, AlTiN and TiCN-Al2O3 Coated Carbide Inserts in Turning of Invar 36 Alloy . Journal of Engineering Research and Applied Science, 11(1), 2045-2061. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/276
Section
Articles