Tensile Strength Enhancement of An Epoxy System by SiO2 Addition

  • M. Kerim Erarslan Amasya University
  • Levent Semiz Amasya University
Keywords: Epoxy, silica, tensile strength

Abstract

In this study, the tensile strength enhancement of an epoxy system was aimed by the addition of SiO2 nanoparticles.  Two main features of the nanoparticle performance on the tensile strength increment were particle size and particle amount. Hence, two particle sizes with various amounts were utilized for SiO2 application in order to improve the tensile strength of the epoxy system. 80 nm particle sized SiO2 provided 66.6% increment when the utilized SiO2 amount was 0.5% by weight. Moreover, when particle size of SiO2 was decreased to 5-20nm, the highest improvement was measured as 88.2%. Also, it was observed that there was a threshold in the utilization amount. Before this point the enhancement improved with SiO2 amount. However after this point, the tensile strength started to decrease with increasing SiO2 addition. This threshold was observed as 0.5% for both 5-20 nm and 80 nm particle sizes.

Author Biographies

M. Kerim Erarslan, Amasya University

Graduate School of Natural and Applied Sciences

Mechanical Engineering

Amasya, Turkey

Levent Semiz, Amasya University

Vocational School of Technical Sciences

Chemistry and Chemical Process Technology

Amasya, Turkey

References

Zhang, Y.; Zhang, Z.; Li, J.; Sui, G. (3-Aminopropyl) Triethoxysilane Grafted Poly(Dopamine)@Fe3O4 Nanoparticles and Their Epoxy Composites for Functional Application. Compos. Part B Eng., 2019, 169 (April), 148–156. https://doi.org/10.1016/j.compositesb.2019.04.012.

Peng, C.; Wu, Z.; Zhou, D. Synthesis of a Benzoxazine-Type Dispersant and Its Application on Epoxy/Benzoxazine/ZrO 2 Composite: Dispersion Performance and Tensile Behavior. Compos. Part B Eng., 2019, 167 (August 2018), 507–516. https://doi.org/10.1016/j.compositesb.2019.02.068.

Zotti, A.; Elmahdy, A.; Zuppolini, S.; Borriello, A.; Verleysen, P.; Zarrelli, M. Aromatic Hyperbranched Polyester/RTM6 Epoxy Resin for EXTREME Dynamic Loading Aeronautical Applications. Nanomaterials, 2020, 10 (2), 1–19. https://doi.org/10.3390/nano10020188.

Li, H.; Liu, F.; Tian, H.; Wang, C.; Guo, Z.; Liu, P.; Peng, Z.; Wang, Q. Synergetic Enhancement of Mechanical and Electrical Strength in Epoxy/Silica Nanocomposites via Chemically-Bonded Interface. Compos. Sci. Technol., 2018, 167 (August), 539–546. https://doi.org/10.1016/j.compscitech.2018.08.047.

Wang, B.; Bai, Y.; Hu, X.; Lu, P. Shear Strength of Epoxy Adhesive Joint between Steel Substrates with Indented Patterns. J. Adhes., 2017, 93 (9), 657–666. https://doi.org/10.1080/00218464.2015.1132172.

Saba, N.; Alothman, O. Y.; Almutairi, Z.; Jawaid, M.; Ghori, W. Date Palm Reinforced Epoxy Composites: Tensile, Impact and Morphological Properties. J. Mater. Res. Technol., 2019, 8 (5), 3959–3969. https://doi.org/10.1016/j.jmrt.2019.07.004.

Hallonet, A.; Ferrier, E.; Michel, L.; Benmokrane, B. Durability and Tensile Characterization of Wet Lay-up Flax/Epoxy Composites Used for External Strengthening of RC Structures. Constr. Build. Mater., 2019, 205, 679–698. https://doi.org/10.1016/j.conbuildmat.2019.02.040.

Jung, J.; Sodano, H. A. High Strength Epoxy Nanocomposites Reinforced by Epoxy Functionalized Aramid Nanofibers. Polymer (Guildf)., 2020, 195 (December 2019), 122438. https://doi.org/10.1016/j.polymer.2020.122438.

Jojibabu, P.; Zhang, Y. X.; Rider, A. N.; Wang, J.; Wuhrer, R.; Prusty, B. G. High-Performance Epoxy-Based Adhesives Modified with Functionalized Graphene Nanoplatelets and Triblock Copolymers. Int. J. Adhes. Adhes., 2020, 98 (December 2019), 102521. https://doi.org/10.1016/j.ijadhadh.2019.102521.

Yang, W.; Wu, S.; Yang, W.; Chun-Yin Yuen, A.; Zhou, Y.; Yeoh, G.; Boyer, C.; Wang, C. H. Nanoparticles of Polydopamine for Improving Mechanical and Flame-Retardant Properties of an Epoxy Resin. Compos. Part B Eng., 2020, 186 (August 2019), 107828. https://doi.org/10.1016/j.compositesb.2020.107828.

Maloth, B.; Srinivasulu, N. V.; Rajendra, R. Influence of Titanium Oxide Fillers on the Tensile and Flexural Properties of E-Glass Fabric/Epoxy Composites. Mater. Today Proc., 2020, 27 (xxxx), 1073–1078. https://doi.org/10.1016/j.matpr.2020.01.462.

Saraç, İ.; Adin, H.; Temiz, Ş. Investigation of the Effect of Use of Nano-Al 2 O 3 , Nano-TiO 2 and Nano-SiO 2 Powders on Strength of Single Lap Joints Bonded with Epoxy Adhesive. Compos. Part B Eng., 2019, 166 (February 2018), 472–482. https://doi.org/10.1016/j.compositesb.2019.02.007.

Gupta, S. K.; Shukla, D. K. Effect of Stress Rate on Shear Strength of Aluminium Alloy Single Lap Joints Bonded with Epoxy/Nanoalumina Adhesives. Int. J. Adhes. Adhes., 2020, 99 (March), 102587. https://doi.org/10.1016/j.ijadhadh.2020.102587.

Haeri, S. Z.; Asghari, M.; Ramezanzadeh, B. Enhancement of the Mechanical Properties of an Epoxy Composite through Inclusion of Graphene Oxide Nanosheets Functionalized with Silica Nanoparticles through One and Two Steps Sol-Gel Routes. Prog. Org. Coatings, 2017, 111 (January), 1–12. https://doi.org/10.1016/j.porgcoat.2017.05.003.

Megahed, M.; Megahed, A. A.; Agwa, M. A. Mechanical Properties of on/off-Axis Loading for Hybrid Glass Fiber Reinforced Epoxy Filled with Silica and Carbon Black Nanoparticles. Mater. Technol., 2018, 33 (6), 398–405. https://doi.org/10.1080/10667857.2018.1454022.

Jojibabu, P.; Zhang, Y. X.; Rider, A. N.; Wang, J.; Gangadhara Prusty, B. Synergetic Effects of Carbon Nanotubes and Triblock Copolymer on the Lap Shear Strength of Epoxy Adhesive Joints. Compos. Part B Eng., 2019, 178 (September), 107457. https://doi.org/10.1016/j.compositesb.2019.107457.

Demir, B.; Chan, K. Y.; Yang, D.; Mouritz, A.; Lin, H.; Jia, B.; Lau, K. T.; Walsh, T. R. Epoxy-Gold Nanoparticle Nanocomposites with Enhanced Thermo-Mechanical Properties: An Integrated Modelling and Experimental Study. Compos. Sci. Technol., 2019, 174 (November 2018), 106–116. https://doi.org/10.1016/j.compscitech.2019.02.020.

Jabbar, M.; Karahan, M.; Nawab, Y.; Ashraf, M.; Hussain, T. Effect of Silica Nanoparticles on Mechanical Properties of Kevlar/Epoxy Hybrid Composites. J. Text. Inst., 2019, 110 (4), 606–613. https://doi.org/10.1080/00405000.2018.1529213.

Kamran-Pirzaman, A.; Rostamian, Y.; Babatabar, S. Surface Improvement Effect of Silica Nanoparticles on Epoxy Nanocomposites Mechanical and Physical Properties, and Curing Kinetic. J. Polym. Res., 2020, 27 (1). https://doi.org/10.1007/s10965-019-1918-y.

Hassanzadeh-Aghdam, M. K.; Ansari, R.; Mahmoodi, M. J. Micromechanical Analysis of the Elastic Response of Glass-Epoxy Hybrid Composites Containing Silica Nanoparticles. Mech. Adv. Mater. Struct., 2019, 26 (23), 1920–1934. https://doi.org/10.1080/15376494.2018.1455930.

Demircan, G.; Kisa, M.; Ozen, M.; Aktas, B. Surface-Modified Alumina Nanoparticles-Filled Aramid Fiber-Reinforced Epoxy Nanocomposites: Preparation and Mechanical Properties. Iran. Polym. J. (English Ed., 2020, 29 (3), 253–264. https://doi.org/10.1007/s13726-020-00790-z.

Published
2022-06-30
How to Cite
Erarslan, M. K., & Semiz, L. (2022). Tensile Strength Enhancement of An Epoxy System by SiO2 Addition. Journal of Engineering Research and Applied Science, 11(1), 2008-2014. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/275
Section
Articles