A comparison of techniques for analyzing and studying kidney stones and their accuracy in determining the most likely phases of common stones among patients: a review

  • A.H.H. Al-Jalawee Erzincan Binali Yıldırım University
  • Sevil Durdagi Erzincan Binali Yıldırım University
Keywords: Kidney stones, spectroscopy, phase, trace elements

Abstract

Kidney stones are among the chronic diseases that remain prevalent throughout the world, with cases increasing annually. Crystals indicate the formation of these urinary stones, therefore they are one of the most significant factors in the creation of the final form of kidney stones. Despite the considerable number of studies that shed light on this disease, now that many concepts related to this illness remain unclear and incomprehensible, such as the relationship of phases to the sort of stone, or the correlation of the quality of trace elements to the type or form of the final stone.  The analysis of kidney stones is the most important step that can be done after extracting the stones from the kidneys or the body.  Since the chemical methods used in analyzing these components have been considered unhelpful, due to their inaccuracy, high error rate, the inability to determine the crystalline contents within these stones, so It has become crucial to use and highlight more reliable, more accurate techniques when analyzing these stones in order to fully understand the connection between the formation and phases of stones, as well the sort of the initial phase and the role of elements in the nucleation of these stones. The aim of this review is to compare the common methods used in previous studies and to report which techniques are highly reliable.

Author Biographies

A.H.H. Al-Jalawee, Erzincan Binali Yıldırım University

Physics

Sevil Durdagi, Erzincan Binali Yıldırım University

Physics

References

Amidon, G. E., Secreast, P. J., & Mudie, D. (2009). Particle, powder, and compact characterization. In Developing solid oral dosage forms (pp. 163–186). Elsevier.
Ancharov, A. I., Potapov, S. S., Moiseenko, T. N., Feofilov, I. V, & Nizovskii, A. I. (2007). Model experiment of in vivo synchrotron X-ray diffraction of human kidney stones. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 575(1–2), 221–224.
Basiri, A., Taheri, M., & Taheri, F. (2012). What is the state of the stone analysis techniques in urolithiasis? Urology Journal, 9(2), 445–454.
Carmona, N., Ortega-Feliu, I., Gomez-Tubio, B., & Villegas, M. A. (2010). Advantages and disadvantages of PIXE/PIGE, XRF and EDX spectrometries applied to archaeometric characterisation of glasses. Materials Characterization, 61(2), 257–267.
Channa, N. A., Ghangro, A. B., Soomro, A. M., & Noorani, L. (2007). Analysis of kidney stones by FTIR spectroscopy. Jlumhs, 2, 66–73.
Charafi, S., Mbarki, M., COSTA, B. A., Prieto, R. M., Oussama, A., & Grases, F. (2010). A comparative study of two renal stone analysis methods.
Chassot, E., Oudadesse, H., Irigaray, J., Curis, E., Bénazeth, S., & Nicolis, I. (2001). Differentiation of biological hydroxyapatite compounds by infrared spectroscopy, x-ray diffraction and extended x-ray absorption fine structure. Journal of Applied Physics, 90(12), 6440–6446.
Chou, Y.-H., Li, W.-M., Li, C.-C., Huang, S.-P., Liu, C.-C., Wu, W.-J., Hsiao, H.-L., Chang, T.-H., Juan, Y.-S., & Su, C.-Y. (2007). Clinical study of uric acid urolithiasis. The Kaohsiung Journal of Medical Sciences, 23(6), 298–301.
D’Ascenzo, G., Curini, R., de Angelis, G., Cardarelli, E., Magri, A., & Miano, L. (1983). Renal calculi analysis. Application of thermal analytical techniques. Thermochimica Acta, 62(2–3), 149–169.
Daudon, M., Bazin, D., André, G., Jungers, P., Cousson, A., Chevallier, P., Véron, E., & Matzen, G. (2009). Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. Journal of Applied Crystallography, 42(1), 109–115.
Daudon, M., & Bazin, D. C. (2012). Application of physical methods to kidney stones and Randall’s plaque characterization. In Urolithiasis (pp. 683–707). Springer.
Deganello, bS. (1981). The structure of whewellite, CaC2O4. H2O at 328 K. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 37(4), 826–829.
Dinnebier, R. E., & Billinge, S. J. L. (2008). Principles of powder diffraction. Powder Diffraction: Theory and Practice, 1–19.
Grases, F., Villacampa, A. I., Costa-Bauza, A., & Söhnel, O. (2000). Uric acid calculi: types, etiology and mechanisms of formation. Clinica Chimica Acta, 302(1–2), 89–104.
Hahn, D. W., & Omenetto, N. (2012). Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Applied Spectroscopy, 66(4), 347–419.
Kaiser, J., Holá, M., Galiová, M., Novotný, K., Kanický, V., Martinec, P., Ščučka, J., Brun, F., Sodini, N., & Tromba, G. (2011). Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study. Urological Research, 39(4), 259–267.
Kaloustian, J., El-Moselhy, T. F., & Portugal, H. (2003). Determination of calcium oxalate (mono-and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: the use of simultaneous thermal analysis in urinary calculi. Clinica Chimica Acta, 334(1–2), 117–129.
Kasidas, G. P., Samuell, C. T., & Weir, T. B. (2004). Renal stone analysis: why and how? Annals of Clinical Biochemistry, 41(2), 91–97.
Khan, S. R., & Hackett, R. L. (1986). Identification of urinary stone and sediment crystals by scanning electron microscopy and x-ray microanalysis. The Journal of Urology, 135(4), 818–825.
Knoll, T. (2007). Stone disease. European Urology Supplements, 6(12), 717–722.
Lehmann, C. A., McClure, G. L., & Smolens, I. (1988). Identification of renal calculi by computerized infrared spectroscopy. Clinica Chimica Acta, 173(2), 107–116.
Linke, R., Schreiner, M., & Demortier, G. (2004). The application of photon, electron and proton induced X-ray analysis for the identification and characterisation of medieval silver coins. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 226(1–2), 172–178.
López, M., & Hoppe, B. (2010). History, epidemiology and regional diversities of urolithiasis. Pediatric Nephrology, 25(1), 49–59.
Manzoor, M. A. P., Agrawal, A. K., Singh, B., Mujeeburahiman, M., & Rekha, P.-D. (2019). Morphological characteristics and microstructure of kidney stones using synchrotron radiation μCT reveal the mechanism of crystal growth and aggregation in mixed stones. PloS One, 14(3), e0214003.
Manzoor, M. A. P., Mujeeburahiman, M., & Rekha, P. D. (2017). Association of serum biochemical panel with mineralogical composition of kidney stone in India. Acta Medica International, 4(2), 26.
Marickar, Y. M. F., Lekshmi, P. R., Varma, L., & Koshy, P. (2009). Elemental distribution analysis of urinary crystals. Urological Research, 37(5), 277–282.
Materazzi, S., Curini, R., D’Ascenzo, G., & Magri, A. D. (1995). TG-FTIR coupled analysis applied to the studies in urolithiasis: characterization of human renal calculi. Thermochimica Acta, 264, 75–93.
Miller, N. L., Evan, A. P., & Lingeman, J. E. (2007). Pathogenesis of renal calculi. Urologic Clinics of North America, 34(3), 295–313.
Miranda, J. (1996). Low energy PIXE: advantages, drawbacks, and applications. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 118(1–4), 346–351.
Orlando, M. T. D., Kuplich, L., De Souza, D. O., Belich, H., Depianti, J. B., Orlando, C. G. P., Medeiros, E. F., Da Cruz, P. C. M., Martinez, L. G., & Corrêa, H. P. S. (2008). Study of calcium oxalate monohydrate of kidney stones by X-ray diffraction. Powder Diffraction, 23(S1), S59–S64.
Oyedotun, T. D. T. (2018). X-ray fluorescence (XRF) in the investigation of the composition of earth materials: a review and an overview. Geology, Ecology, and Landscapes, 2(2), 148–154.
Parigger, C. G., Guan, G., & Hornkohl, J. O. (2003). Measurement and analysis of OH emission spectra following laser-induced optical breakdown in air. Applied Optics, 42(30), 5986–5991.
Pineda-Vargas, C. A., Eisa, M. E. M., & Rodgers, A. L. (2009). Characterization of human kidney stones using micro-PIXE and RBS: A comparative study between two different populations. Applied Radiation and Isotopes, 67(3), 464–469.
Pineda, C. A., & Peisach, M. (1994). Micro-analysis of kidney stones sequentially excreted from a single patient. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 85(1–4), 896–900.
Pineda, C. A., Rodgers, A. L., Prozesky, V. M., & Przybylowicz, W. J. (1995). Elemental mapping analysis of recurrent calcium oxalate human kidney stones. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 104(1–4), 351–355.
Poswal, A. K., Bhattacharyya, D., Jha, S. N., & Sabharwal, S. C. (2012). EXAFS investigations on PbMoO 4 single crystals grown under different conditions. Bulletin of Materials Science, 35(1), 103–106.
ROSE, G. A., & Woodfine, C. (1976). The thermogravimetric analysis of renal stones (in clinical practice). British Journal of Urology, 48(6), 403–412.
Schubert, G. (2006). Epidemiology of stone disease. Urol Res, 34, 146–150.
Schubert, Gernot. (2006). Stone analysis. Urological Research, 34(2), 146–150.
Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R., & Bonanno, E. (2018). Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European Journal of Histochemistry: EJH, 62(1).
Singh, Vivek K, Jaswal, B. B. S., Sharma, J., & Rai, P. K. (2017). Spectroscopic investigations on kidney stones using Fourier transform infrared and X‐ray fluorescence spectrometry. X‐Ray Spectrometry, 46(4), 283–291.
Singh, Vivek K, Rai, A. K., Rai, P. K., & Jindal, P. K. (2009). Cross-sectional study of kidney stones by laser-induced breakdown spectroscopy. Lasers in Medical Science, 24(5), 749–759.
Singh, Vivek K, & Rai, P. K. (2014). Kidney stone analysis techniques and the role of major and trace elements on their pathogenesis: a review. Biophysical Reviews, 6(3–4), 291–310.
Singh, Vivek Kumar, & Rai, A. K. (2011). Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review. Lasers in Medical Science, 26(5), 673–687.
Siritapetawee, J., & Pattanasiriwisawa, W. (2008). An attempt at kidney stone analysis with the application of synchrotron radiation. Journal of Synchrotron Radiation, 15(2), 158–161.
Spieÿ, L., Teichert, G., Schwarzer, R., Behnken, H., & Genzel, C. (2009). Moderne Röntgenbeugung: Röntgendi raktometrie für Materialwissenschaftler, Physiker und Chemiker. Vieweg+ Teubner Verlag/GWV Fachverlage GmbH Wiesbaden, Wiesbaden.
Srivastava, A., Swain, K. K., Vashisht, B., Aggarwal, P., Mete, U., Acharya, R., Wagh, D. N., & Reddy, A. V. R. (2014). Studies of kidney stones using INAA, EDXRF and XRD techniques. Journal of Radioanalytical and Nuclear Chemistry, 300(1), 191–194.
Stevens, D. J., McKenzie, K., Cui, H. W., Noble, J. G., & Turney, B. W. (2015). Smartphone apps for urolithiasis. Urolithiasis, 43(1), 13–19.
Taggart, J. E., Lindsey Jr, J. R., Vivit, D. V, Bartel, A. J., & Stewart, K. C. (1770). Analysis of geologic materials by wavelength-dispersive X-ray fluorescence spectrometry. Methods for Geochemical Analysis: US Geological Survey Bulletin.
Tamosaityte, S., Hendrixson, V., Zelvys, A., Tyla, R., Kucinskiene, Z. A., Jankevicius, F., Pucetaite, M., Jablonskiene, V., & Sablinskas, V. (2013). Combined studies of chemical composition of urine sediments and kidney stones by means of infrared microspectroscopy. Journal of Biomedical Optics, 18(2), 27011.
Uvarov, V., Popov, I., Shapur, N., Abdin, T., Gofrit, O. N., Pode, D., & Duvdevani, M. (2011). X-ray diffraction and SEM study of kidney stones in Israel: quantitative analysis, crystallite size determination, and statistical characterization. Environmental Geochemistry and Health, 33(6), 613–622.
Verma, H. R. (2007). X-ray fluorescence (XRF) and particle-induced X-ray emission (PIXE). Atomic and Nuclear Analytical Methods: XRF, Mössbauer, XPS, NAA and B63Ion-Beam Spectroscopic Techniques, 1–90.
Weltje, G. J., & Tjallingii, R. (2008). Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth and Planetary Science Letters, 274(3–4), 423–438.
Yin, X., Li, H., Guo, Z., Wu, L., Chen, F., de Matas, M., Shao, Q., Xiao, T., York, P., & He, Y. (2013). Quantification of swelling and erosion in the controlled release of a poorly water-soluble drug using synchrotron X-ray computed microtomography. The AAPS Journal, 15(4), 1025–1034.
Zhu, Y., Cai, X., Li, J., Zhong, Z., Huang, Q., & Fan, C. (2014). Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials. Nanomedicine: Nanotechnology, Biology and Medicine, 10(3), 515–524.
Published
2021-12-31
How to Cite
Al-Jalawee, A., & Durdagi, S. (2021). A comparison of techniques for analyzing and studying kidney stones and their accuracy in determining the most likely phases of common stones among patients: a review. Journal of Engineering Research and Applied Science, 10(2), 1919-1928. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/270
Section
Articles