Investigation on cobalt-free anodes and cathodes for solid oxide fuel cell

  • K. Ermis Sakarya University of Applied Sciences
Keywords: cobalt-free, nanofiber, fuel cells, cathodes

Abstract

Generally, global warming raised by greenhouse gas emissions is a great threat. New technologies are evolving that can reduce carbon emissions significantly, one of them is fuel cell.  Fuel cell combines hydrogen and oxygen to produce electricity through an electrochemical reaction.  Because the by products are only water and heat, there are no carbon emissions and as generation continues to shift away from coal and towards natural gas, fuel cells will not only dramatically reduce CO2 emissions but also combine with power plants burning a less carbon-intensive fuel.  Cathodes that have Cobalt are known for their ability to act under high-temperature conditions in solid oxide fuel cells (SOFCs).  In this paper, the investigation of results and effects are presented for various studies on the cobalt-free anode and cobalt-free nanofiber cathode development. The polarization resistance of SOFC cathodes, which is one of the important characters in determining the cathodic performance, revealed the importance of nanofiber for this process in this investigation.

Author Biography

K. Ermis, Sakarya University of Applied Sciences

Department of  Mechanical Engineering

References

[1] O'Hayre R., Cha S.W., Colella W.G., Prinz FB. Fuel Cell Fundamentals. John Wiley&Sons Inc., Hoboken, NJ, USA, 2016.
[2] Shao Z., Haile S.M. A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 431, 2004, 170-173.
[3] Zhi M., Lee S., Miller N., Menzler N.H., Wu N. An intermediate-temperature solid oxide fuel cell with electrospun nanofiber cathode. Energy Environmental Sci., 5, 2012, 7066-7071.
[4] Chen Y., Bu Y., Zhao B., Zhang Y., Ding D., Hu R., Wei T., Rainwater B., Ding Y., Chen F., Yang C., Liu J., Liu M. A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells. Nano Energy, 26, 2016, 90-99.
[5] Lee J.G., Park J.H., Shul Y.G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2Wcm-2 at 550 oC. Nature Communications, 2014, 1-10.
[6] Duan, C., Tong, J., Shang, M., Nikodemski, S., Sanders, M., Ricote, S., Almansoori, A., O'Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 349, 2015, 1321-1326.
[7] Murray E.P., Tsai T., Barnett S.A. A direct-methane fuel cell with a ceria-based anode. Nature, 400, 1999, 649–651.
[8] Park S., Vohs J.M., Gorte R.J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 404, 2000, 265–267.
[9] Hibino T., Hashimoto A., Inoue T., J. Tokuno, Yoshida S., Sano M., A low-operating temperature solid oxide fuel cell in hydrocarbon-air mixtures. Science, 288, 2000, 2031–2033.
[10] Adams T.A., Nease J., Tucker D., Barton P.I. Energy conversion with solid oxide fuel cell systems: A review of concepts and outlooks for the short- and long-term. Ind. Eng. Chem. Res., 52, 2012,3089– 3111.
[12] Jacobson A.J. Materials for solid oxide fuel cells. Chem. Mater. 22, 2009, 660–674.
[13] Choi S., Yoo S., Kim J., Park S., Jun A., Sengodan S., Kim J., Shin J., Jeong H.Y., Choi Y., Kim G., Liu M. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ. Scientific Reports, 3, 2426, 2013, 1-6.
[14] Lee J.G., Park J.H., Shul Y.G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm-2 at 550 °C. Nature Communications. 5, 2014, 4045.
[15] Tang,H., Jin Z., Wu Y., Liu W., Bi L. Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells. Electrochemistry Communications, 100, 2019, 108-112.
[16] Kharton V.V., Marques F.M.B., Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics. 174, 2004, 135-149.
[17] Cowin P.I., Petit C.T.G., Lan R., Irvine J.T.S., Tao S. Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells. Advanced Energy Materials, 1, 2011, 314–332.
[18] Chen M., Kim B.H., Xu Q., Nam O.J, Ko J.H. Synthesis and performances of Ni–SDC cermets for IT-SOFC anode. Journal of the European Ceramic Society, 28, 2008, 2947–2953.
[19] Zhua Z., Guoa E., Weia Z., Wang H. Tailoring Ba3Ca1.18Nb1.82O9-δ with NiO as electrolyte for proton-conducting solid oxide fuel cells. Journal of Power Sources, 373, 2018, 132-138.
[20] Wang B., Bi L., Zhao X.S., Liquid-phase synthesis of SrCo0.9Nb0.1O3-δ cathode material for proton-conducting solid oxide fuel cells. Ceramics International, 44, 2018, 5139-5144.
[21] Li W., Guan B., Yan J., Zhang N., Zhang X., Liu X. Enhanced surface exchange activity and electrode performance of La2_2xSr2x)(Ni1_xMnx)O4-δ cathode for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 318, 2016, 178-183.
[22] Tsipis E.V.. Kharton V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. J Solid State Electrochem 12, 2008, 1367–1391.
[23] Molin S., Lewandowska-Iwaniak W., Kusz B., Gazda M., Jasinski P. Structural and electrical properties of Sr(Ti,Fe)O3-δ materials for SOFC cathodes. J Electroceramics, 28,2012, 80-87.
[24] Ropp R.C., Chapter 1 - The Alkaline Earths as Metals. Encyclopedia of the Alkaline Earth Compounds, 2013, Elsevier.
[25] Zhou Q., Zhang L., He T. Cobalt-free cathode material SrFe0.9Nb0.1O3−δ for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 12, 2010, 285-287.
[26] Jiang, S., Zhou W., Niu, Zhu Z., Shao, Z. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells, ChemSusChem, 5, 2012, 2023-2031.
[27] Zhang Y., Huang X., Lu Z., Liu Z., Ge X., Xu J., Xin X., Sha X., Su W. Ni–Sm0.2Ce0.8O1.9 anode-supported YSZ electrolyte film and its application in solid oxide fuel cells. Journal of Alloys and Compounds, 428, 2007, 302-306.
[28] Ding J., Liu J., Guo W. Fabrication and study on Ni1−xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells. Journal of Alloys and Compounds, 480, 2009, 286-290.
[29] Ye X.F., Wang S.R., Hu Q., Chen J.Y., Wen T. L., Wen Z.Y., Improvement of Cu–CeO2 anodes for SOFCs running on ethanol fuels. Solid State Ionics. 180, 2009, 276-281.
[30] Huang B., Ye X.F., Wang S.R., Nie H.W., Liu R.Z., Wen T.L., Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC. Materials Research Bulletin, 42, 2007, 1705-1714.
[31] Ye X.F., Wang S.R., Hu Q., Wang Z.R., Wen T.L., Wen Z.Y. Improvement of multi-layer anode for direct ethanol Solid Oxide Fuel Cells. Electrochemistry Communications, 11, 2009, 823–826.
[32] Qiao J. , Sun K., Zhang N., Sun B., Kong J., Zhou D. Ni/YSZ and Ni–CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells. Journal of Power Sources, 169, 2007, 253-258.
[33] Ma Q., Ma J., Zhou S., Yan R., Gao J., Meng G. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. Journal of Power Sources, 164,2007, 86-89.
[34] Bozza F., Polini R., Traversa E. High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3−δ electrolyte films prepared by electrophoretic deposition Electrochemistry Communications, 11, 2009, 1680-1683.
[35] Storjohann D., Daggett J., Sullivan N.P., Zhu H., Kee R.J., Menzer S., Beeaff D. Fabrication and evaluation of solid-oxide fuel cell anodes employing reaction-sintered yttria-stabilized zirconia. Journal of Power Sources, 193, 706-712.
[36] Xia C.R., Liu M.L. Novel Cathodes for Low‐Temperature Solid Oxide Fuel Cells. Advanced Materials, 2002, 14, 521–523.
[37] Zhan Z., Lee S.I. Thin film solid oxide fuel cells with copper cermet anodes. Journal of Power Sources, 195, 2010, 3494-3497.
[38] Ye X.F., Wang S.R., Hu Q., Wang Z.R., Wen T.L., Wen Z.Y. Improvement of multi-layer anode for direct ethanol Solid Oxide Fuel Cells, Electrochem. Commun., 11 2009, 823–826.
[40] Huang B., Ye X.F., Wang S.R. , Nie H.W., Liu R.Z., Wen T.L. Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC. Materials Research Bulletin, 42, 2007, 1705-1714.
[41] Blennow P., P. Hagen P., Hansen K.K., Wallenberg L.R., Mogensen M. Defect and electrical transport properties of Nb-doped SrTiO3P Blennow, A Hagen, KK Solid State Ionics, 179, 2008, 2047-2058.
[42] Chen X. J., Liu Q.L., Khor K.A., Chan S.H. High-performance (La,Sr)(Cr,Mn)O3/ (Gd,Ce)O2−δ composite anode for direct oxidation of methane. J. Power Sources 165, 2007, 34-40.
[43] Zhu X., Lu Z., Wei B., Zhang Y., Huang X., Su W. A comparison of La0.7Sr0.25Cr0.5Mn0.5O3−δ and Ni impregnated porous YSZ anodes fabricated in two different ways for SOFCs. Electrochem.Solid-State Lett. 2010, 3932-3938.
[44] Ye X.F., Wang S.R., Wang Z.R., Hu Q., Sun X. F., Wen T.L., Wen Z.Y., Use of La0.7Sr0.25Cr0.5Mn0.5O3 materials in composite anodes for direct ethanol solid oxide fuel cells. J. Power Sources 2008 , 183 , 512-517.
[45] Lu X.C., Zhu J.H. Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3−δ anodes for direct utilization of methane in SOFC. Solid State Ionics, 2007, 178 , 1467-1475.
[46] Chen X.J., Liu Q.L. , Khor K.A., Chan S. H. J. High-performance (La,Sr)(Cr,Mn)O3/
(Gd,Ce)O2−δ composite anode for direct oxidation of methane Power Sources 2007 ,165 , 34-40.
[47] Zhu X., Lü Z., Wei B., Chen K. , Liu M., Huang X., Su W. Fabrication and performance of membrane solid oxide fuel cells with La0.75Sr0.25Cr0.5Mn0.5O3-δ impregnated anodes. J. Power Sources 2010, 195, 1793-1798.
[48] Zhu X., Lü Z., Wei B., Chen K. , Liu M., Huang X., Su. J. Enhanced performance of solid oxide fuel cells with Ni/CeO2 modified La0.75Sr0.25Cr0.5Mn0.5O3-δ anodes Power Sources, 2009, 190, 326-330.
Published
2019-12-31
How to Cite
Ermis, K. (2019). Investigation on cobalt-free anodes and cathodes for solid oxide fuel cell. Journal of Engineering Research and Applied Science, 8(2), 1160-1167. Retrieved from http://www.journaleras.com/index.php/jeras/article/view/170
Section
Articles