Journal of Engineering Research and Applied Science Available at www.journaleras.com Volume 12 (2), December 2023, pp 2414-2424 ISSN 2147-3471 © 2023



### 2,5 MW Photovoltaic Solar Power Plant Maintenance, Operation and Design: Konya/Comaklı Case

Unal Kurt<sup>1,\*</sup>, Ömer Çıkışır<sup>2</sup>

<sup>1</sup>Amasya University, Electrical and Electronics Engineering, Amasya, Turkey <sup>2</sup>Amasya University, Instute of Science and Technology, Amasya, Turkey

Accepted 13 October 2023

#### Abstract

In this study, routine maintenance techniques such as planned and unplanned maintenance activities, regular inspections and cleanings, which are the types of maintenance activities in a photovoltaic power plant, are described. A solar power plant with a power of 2.5 MW in the Comaklı region of Konya province was designed by the PVsyst program, and a simulation report was prepared. According to the simulation report, it is seen that the highest energy production is in August, and the lowest energy production is in December. The annual energy the plant supplies to the grid is 4113.7 MWh, and the plant performance ratio is 82%. Since the energy source in photovoltaic solar energy is the sun, there is no depletion of the energy source as in fossil fuels. With the increase in the world population and its dependence on technology, energy consumption is increasing daily. People have started to consume limited resources on Earth to meet their unlimited needs and have begun to turn to renewable energy sources from fossil fuels, which are decreasing daily. Renewable energy sources help to protect the environment by reducing carbon dioxide emissions and reducing foreign dependence on energy. Our country is fortunate in terms of solar energy compared to many countries. The annual sunshine duration is 2,741 hours, and the average yearly total radiation value is calculated as 1,527.46 kWh/m<sup>2</sup>.

Keywords: PVsyst, photovoltaic energy, inverter, solar cell, tilt angle, azimuth angle, Comakli

#### **1. Introduction**

## **1.1. Operation and Maintenance in Photovoltaic Energy Systems**

Maintenance and operation in photovoltaic solar power plants is a set of works to be carried out for the plant to provide the best performance. Correct operation and timely maintenance ensure that the equipment in the plant generates the maximum amount of energy throughout its operational life, maximizing the interests of customers and investors. The performance of photovoltaic solar power plants is adversely affected by dust accumulation on the equipment, shading, improper installation, improper connection not following standards, improper cable selection, and improper cable termination. Especially in solar panels installed in dirty and dusty environments and kept outdoors 24/7, a power loss of 30 percent can be experienced. Figure 1.1. Factors affecting the performance of PV power plants.



Figure 1.1. Factors affecting the performance of PV power plants.

Pollution and dust in the panel cause hot spots in the photovoltaic cell, reducing energy production efficiency and panel lifetime. Figure 1.2. Hot spot in PV cell. The monthly production effect in a 10kWp

PV plant is 1443kWh for a clean module and 1143kWh for a dirty module. It causes 300kW energy loss per hour.

#### Volume 12(2), December 2023, pp 2414-2424



#### **1.2.** Types of Maintenance **1.2.1. Planned maintenance**

It is also defined as preventive maintenance. It aims to reduce the probability of equipment failure. The possibility of malfunctioning is also reduced by regular maintenance work on the equipment. For newly commissioned equipment to operate efficiently during its service life without any problems, routine maintenance work must be carried out. These are the periodic activities in the maintenance control timetable specified in the user manual of the equipment. [8]

#### **1.2.2 Unplanned Maintenance**

It is called Corrective maintenance too. It is a restorative activity carried out for the commissioning of the power plant in an unplanned shutdown that occurs when it is not known when the equipment will be out of service. When the malfunction occurs,

production planning is adversely affected by this situation as it is unknown. Minimizing unplanned maintenance depends on correct and timely planned maintenance.

#### 1.3. Maintenance and Periodic Controls of **Photovoltaic Modules**

Photovoltaic panels are generally considered to be maintenance-free. To make the panels more efficient and to prevent unplanned downtime and loss of production, maintenance, and periodic checks should be carried out. In daily visual inspections, modules are checked for cracks, rain-snow water leaks, snail marks, bird droppings, and discoloration. In periodic maintenance, physical control of the DC connectors on the modules, corrosion control between the module-profile connection, control of shading that may occur due to a tree or other object, control of whether the connection hooks between the module and the profile are properly mounted on the panel or the tightness of the connection, control of whether there is any deformation in the cables on the cable route of each panel, control of the grounding of each module, thermal controls of the modules. [8]

The detected problems should be solved in planned or corrective maintenance according to the urgency. Before starting panel cleaning, it must be checked whether there is a damaged panel. During cleaning, a crack in the panel, a broken area, or a loose connection may cause electric shocks. Panel cleaning is done with water, manually or automatically. The cloth or brush used should be soft, and the detergent should not have abrasive properties. The panels should not be stepped on during cleaning; even if there is no visible crack on the panels stepped on, it causes micro-cracks.

#### **1.4. Periodic Controls of Inverter**

The inverter must be easily accessible in case of malfunction or during maintenance. It should be checked for abnormal conditions, such as odor, heat, or sound. The cooling fan control and the filter used must be cleaned and replaced if necessary. Whether there is any alarm or warning on the inverter display to be checked. The inverter against dust and pollution to be checked. String connection connectors and earthing cables to be checked for looseness.

#### 1.5. Periodic Controls of Distribution Panels, **Cables and Connections**

In distribution panels, earthing connection, panel cable glands, tightness control of cable terminal connections inside the panel, whether there is insulation weakness of the cables inside the panel, whether there is any sign of heating in the equipment inside the panel, control of panel fixing bolts, damage, and control of the panel cover against corrosion. In addition, the panel must be checked for tightness against rainwater. In case of heavy rain, rainwater may enter the panel. The worn, torn panel cover gasket must be replaced.

The cable installation should be checked for any insulation weakness, crack in the cable, damage, or deterioration in the cable. Rodents may cause short circuits and fire due to gnawing the cables. Distribution panels should be checked against rodent nesting.

#### 1.6. Test Equipment and Hand Tools to Be Used **During Maintenance**

The first goal of the enterprise is to protect the safety, health, and business of the employees. To serve this purpose, the employee and the enterprise must comply with occupational health and safety rules. Since these rules are not an option but necessary, personal protective work safety equipment must be used during work and in the field. The enterprise is obliged to provide this equipment to its employees, and the employee is obliged to use them. Figure 1.3. work safety equipment and hand tools.

#### **Occupational health equipment**

- Helmet
- Safety Glasses
- Safety shoes
- Flame resistant workwear
- Firt aid kit

#### Test equipment and instruments

- Digital multimeter
- Thermography camera
- Angle gauge, IV Meter
- Compass
- Hand tools, (must be insulated)



Figure 1.3. Work safety equipment and hand tools.

## **1.7.** Locking and Labelling of Equipment Used in Photovoltaic System

All equipment must be labeled (inverters, strings, arrays, modules). During the periodic maintenance check, it is necessary to check whether the equipment labels are in place, and if there is an old or difficult to read label, it should be replaced with a new one. In addition, the labels of the equipment used in the outdoor environment should be resistant to the external environment (factors such as rain and sun) that are not easily deformed.

The lock-out tag-out (LOTO) system is a fundamental occupational safety rule to prevent any person from accidentally switching off the power supply switch of the equipment being maintained or repaired and to avoid electrical accidents. Electrical panels, inverters, batteries, and equipment must be labeled, locked, and electrically isolated before maintenance. Thus, precautions are taken against electric shocks due to uncontrolled energization.

#### 2. Design and Simulation of A 2.5 Mw Grid-Connected Photovoltaic Energy Power Plant in Konya Comakli with PVsyst Programme

#### 2.1. Konya Comaklı Geographical Location, Plant Technical Data

The coordinates of the facility to be installed from Google Earth were found as latitude 37,7437022, longitude 32,5426689, and altitude 1.008m. The plant power will be 2.5MW DC and connected to the grid. Figure 2.1. Google Earth Konya Comakli geographical location.[1]



Figure 2.1. Google Earth Konya Comaklı geographical location.

#### 2.2. Adding Geographical Location of Comaklı Region to PVsyst Program

The coordinates of the plant to be established in Konya Comaklı taken from Google Earth are latitude 37,7437022, longitude 32,5426689, and altitude 1.008m. In the window opened in the PVsyst program, click on "Databases," "Geographical sites," and then "New" icon. Figure 2.2. PVsyst Database, geographical locations.

| 📢 Welcome to PVsyst 7.2       | 📥 Meteo database                 | 0                  |                                                                         |                                      |
|-------------------------------|----------------------------------|--------------------|-------------------------------------------------------------------------|--------------------------------------|
| Project design and simulation | Main meteo data:                 |                    |                                                                         |                                      |
| 井<br>Grid-Connected           | ©<br>Geographical sites          | Notes about meteo  | Muqla/Dirlivan<br>Niqde/Kumluca<br>SalihlerAfyon GES<br>Sinop/Bostanoli | Turkey<br>Turkey<br>Turkey<br>Turkey |
| Utilities                     | Display and compare meteo files: |                    |                                                                         |                                      |
| Databases                     | Meteo tables and graphs          | Compare meteo data | Export                                                                  | • New                                |

Figure 2.2. PVsyst Data base, Geographical Locations

In the geographical coordinates window, enter the latitude, longitude, and altitude information of the detected region. When the "Get from coordinates"

icon in the upper right corner is clicked, the Comaklı location name is automatically added to the program. Figure 2.3. PVsyst geographical coordinates



Figure 2.3. PVsyst geographical coordinates

#### 2.3. Retrieval of Konya Comaklı Annual Irradiance Data to the Database in PVsyst Programme

To obtain the weather data of Comaklı, the "Metronom8.0" box under the geographical coordinates heading is ticked and the "Import" icon is pclicked. Figure 2.4. PVsyst Metronome 8.0

Global horizontal irradiation, horizontal diffuse irradiation, temperature, wind speed, relative humidity and total annual solar radiation of Konya Comaklı region are calculated as 1770 KWh/m2 by the programme. The collected data is saved to the database by clicking the "OK" icon. Table 2.5. PVsyst monthly weather forecast.

| Geogr | aprical Coordinates Monthly meteo Interactive Map      |                                            | CHO S | paprical courses           | and representation                  |                                      | P                  |               |                 |            |         |                                                     |    |
|-------|--------------------------------------------------------|--------------------------------------------|-------|----------------------------|-------------------------------------|--------------------------------------|--------------------|---------------|-----------------|------------|---------|-----------------------------------------------------|----|
| -Lo   | cation                                                 | Please import the monthly meteo data (from | 2     | te<br>ata source           | Comakk (T                           | orkey)                               | - 300%             |               |                 |            |         | 1                                                   |    |
| SI    | e name Genève Get from coordinates                     | manually)                                  |       |                            |                                     |                                      |                    |               |                 |            |         | 1                                                   |    |
| 6     | untry Tukey V Region Europe V                          |                                            |       |                            | Global<br>horizontal<br>irrediation | Horizontal<br>diffuse<br>irradiation | Temperature        | Wind Velocity | Linke turbidity | Relative   |         |                                                     |    |
|       |                                                        |                                            | 1     | Jamaary                    | 22.5                                | 29.9                                 | 0.2                | 3.00          | 2.637           | 50<br>01.3 |         | Required Data                                       |    |
| -60   | ographical Coordinates                                 | Meteonorm 8.0                              |       | March                      | 132.9                               | 35.4                                 | 0.8                | 3.80          | 3.440           | 50.0       |         | Clobal horizontal irradiation                       |    |
|       | Sun paths                                              | O NASA-SSE                                 |       | April<br>May               | 212.8                               | 71.1<br>66.3                         | 11,1               | 3.51          | 3.650           | 53.1       |         | Extra data                                          |    |
|       | Decimal Dec. Min. Sec.                                 | O PIGIS TMY Version 5.2 V                  |       | xily                       | 230.4                               | 58.8                                 | 25.0               | 4.71          | 3.185           | 38.0       |         | Wind velocity<br>Linke turbidity                    |    |
|       | Landole (hs.2022 [1]0 [0 [0 (+=Nerty=South Remight.)   | O NEEL / NEEDE THY<br>O Sekest TMY         | 3     | september<br>September     | 200.9                               | 40.0                                 | 23.4               | 3.60          | 2.968           | 94.1       |         | Relative humidity                                   |    |
|       | Althude 308 Nabous sea level                           | O Solar Anywhere ® TGY                     |       | November                   | 72.8                                | 34.0                                 | 0.0                | 2.70          | 2.777           | 70.4       |         | Orradiation units     O KWh/m²/day     S KWh/m²/day |    |
|       | Time zone 1.0 0 Corresponding to an average difference | Import                                     |       | Year 🕜                     | 1769.5                              | 580.0                                | 12.3               | 3.6           | 3.135           | 57.9       |         | O M3/m2/day<br>O M3/m1/mth<br>O Wiler               |    |
|       | Legal Time - Solar Time = Oh 35m                       |                                            |       | G                          | obal horizontal in                  | rradiation year-t                    | o-year variability | 4.4%          |                 |            |         | O Clearneas Index K3                                |    |
|       | Get from name                                          |                                            |       |                            |                                     |                                      |                    |               |                 |            |         |                                                     |    |
| Ш.    |                                                        |                                            |       |                            |                                     |                                      |                    |               | _               |            |         |                                                     |    |
|       |                                                        |                                            |       | <ul> <li>Import</li> </ul> |                                     | Export line                          | 🔶 Export           | table         |                 | + New Site | i Prist | X Cencel                                            | ₩∝ |
|       |                                                        | 1                                          |       |                            |                                     |                                      |                    |               |                 |            |         |                                                     |    |

Figure 2.4. PVsyst Metronome 8.0

#### 2.4. Creating a New Grid Connected Project

Since the photovoltaic solar power plant to be installed will be a grid-connected facility, "New grid connected

Table 2.5. PVsyst monthly weather forecast.

project" is selected from the "Project" menu in the PVSyst program. Figure 2.6. PVsyst new gridconnected

# Preliminary design Project Settings Language License Help New grid-connected project Project design and New Damping project Condectorected Utilities Databases Tools Tools

Figure 2.6. PVsyst new grid-connected

| Project        | 📩 Ver 🎦 Lood 💾 Sane 🛛 🛱 Project settings 🏢 Delete 💡 | Qient .      |
|----------------|-----------------------------------------------------|--------------|
| Project's name | Konya Conaki 2,5 MII Fotovoltak Güneş Santral       | Ömer CIKISIR |

Figure 2.7. PVsyst project name

## **2.5. Entering Panel Tilt Angle and Azimuth Angle for Comaklı Region**

Click the "Orientation" symbol in the variant section and enter the plane inclination information. Figure 2.9. PVsyst variant.

Plane inclination=Latitude angle x 0,87+3.1= $38x0,87+3.1=36^{\circ}$ . [7]

#### Volume 12(2), December 2023, pp 2414-2424

In the window that opens, "Project name" is entered (Figure 2.7. PVsyst project name) and the region previously added to the Comaklı geographic information database from the location file is called from the project list. Table 2.8. PVsyst Metronom8.0 monthly weather zone list. The "Save" icon is clicked.

| 🐣 Meteo File                                             |                                            |
|----------------------------------------------------------|--------------------------------------------|
| omakiMN80_SYN.MET                                        | Çomaklı                                    |
| comaklMN80_SYN27 ekm.MET                                 | Çomaklı                                    |
| Dakar_SYN.MET                                            | Dakar                                      |
| Dakar_Yoff_MN72_SYN.MET                                  | Dakar/Yoff                                 |
| Eski_ehir Salihler 5MW GES_MN80_SYN.MET                  | Eskişehir Salihler 5MW GES                 |
| Eski_ehir _jfteler Mevkii 5MW Güne_Santrali_MN80_SYN.MET | Eskişehir Çifteler Mevkii 5MW Güneş Santri |
| Geneva_MN80_SYN.MET                                      | Geneva                                     |
| Ghantoot_MN80_SYN.MET                                    | Ghantoot                                   |
| Hamburg_Ohe_MN80_SYN.MET                                 | Hamburg/Ohe                                |
| K_t as S_dah_MN80_SYN.MET                                | Küt as Sādah                               |
| K_z_lp_nar_MN80_SYN.MET                                  | Kızılpınar                                 |
| Marseille_Marignane_MN72_SYN.MET                         | Marseille/Marignane                        |
| omaklMN80mod_SYN.MET                                     | Çomaklı                                    |
| omaklMN80_SYN.MET                                        | Çomaklı                                    |

Table 2.8. PVsyst Metronom8.0 monthly weather zone list

The azimuth angle is the angle at which the panels face south and is zero degrees. The panels are mounted on a fixed inclined plane with no sun tracking system, they are motionless. Figure 2.10. PVsyst plane tilt and azimuth.[2]



Figure 2.9. PVsyst variant

## **2.6.** Determination of the Inverter and Panel Model to be used, Determination of the Number of Panels according to the Power Plant Power

From the variant menu shown in Figure 2.9, the system connected to the grid is defined by clicking the "System" icon. Figure 2.9. PVsyst variant.

Figure 2.10. PVsyst plane tilt and azimuth

Power plant DC power is 2500kWp, PV module Vikram Solar 540Wp35VSOMERAVSMH, Inverter: Conergy270kW450-800VTL50/60Hz400VAC threephase. Figure 2.11. PVsyst variant system

|                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                       | List of subarrays                                                                                    |               | 3                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------|------------------|
| Sub-array name and Orientation                                                                                                                                  | Pre-sizing Help<br>O No sizing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Enter planned power                                     | * 🔿 🖓 v 🔺   🗊 👲                                                                                      |               |                  |
| Drient. Fixed Tilted Plane Tilt Azimuth                                                                                                                         | 36°<br>0° ✔ Resize                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or available area(modules) O 11940 m <sup>2</sup>       | Name                                                                                                 | #Mod<br>#Inv. | #String<br>#MPPT |
| Select the PV module<br>Available from Filter All PV modules V<br>Waren Solar Limited S40 Wp 35V S-mono S<br>Use optimizer<br>Staing voltages : Winpp<br>Var of | OMERA VSM1.72.540.05 P Since 202<br>(60°C) 36.2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Approx. needed modules 4630<br>22 Manufacturer C C Open | Viaram<br>Viaram Solar Limited - SOMERA .<br>Conergy - IPG 270C                                      | 14<br>8       | 331<br>1         |
| select the inverter           Available Now         Output voltage 400 V Tri 50Hz           Conergy         270 kW         450 - 800 V Tr.         50           | 0/60 Hz IPG 270C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Since 2009 ✓ C, Open                                    |                                                                                                      |               |                  |
| Nb. of inverters 8 🗘 🗘 Operating voltage:<br>Input maximum vo                                                                                                   | 450-800 V Global Inverte<br>Itage: 1000 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e's power 2160 kWac                                     |                                                                                                      |               |                  |
| No. of inverters 8 C Operating voltage:<br>Input maximum vo<br>Design the array<br>Rumber of modules and strings<br>Mod. in series 14 C between 13 and 18       | 450-800 V Global Inverte<br>tage: 1000 V<br>Cperating conditions<br>Wrop (60*C) 506 V<br>Wrop (65*C) 582 V<br>Vice (10*C) 763 V<br>Vi | r's power 2160 KWac                                     | Global system summary<br>Nb. of modules 4634<br>Module area 11950 m <sup>2</sup><br>Nb. of neverse 8 |               |                  |

Figure 2.11. PVsyst variant system

Inverter DC input minimum MPP voltage is 450V, and maximum MPP voltage is 800V. With 14 string modules and 331 strings, the total number of panels to be used is calculated by the program as 4634. In this case, the voltage to be produced by 14 string modules at -10oC is 763V, and the voltage to be produced at 60oC is 506V and is within the operating conditions of the inverter. (The operating condition of the inverter is between 450-800V). The nominal panel DC

power is 2502 kWp, the maximum panel power is 2757 kWDC, and the nominal AC power is 2160 kWp. [4]

#### 2.7. Losses

Power plant losses are defined by clicking the "Detailed losses" icon from the variant menu shown in. Figure 2.12. PVsyst losses.

| Thermal parameter                                              | Ohmic Losses       | Module quality - LID - Mismatch                                                 | Soiling Loss                                          | IAM Losses                                                                                | Auxiliaries                                                                   | Aging                                          | Unavailability                | Spectral correction |
|----------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|-------------------------------|---------------------|
|                                                                | You can define     | either the Field thermal Loss fact<br>the program gives the e                   | or or the star<br>quivalence!                         | ndard NOCT co                                                                             | efficient:                                                                    |                                                |                               |                     |
| Field Thermal L                                                | oss Factor         |                                                                                 |                                                       | equivalent f                                                                              | actor                                                                         |                                                |                               |                     |
| Thermal Loss facto<br>Constant loss fact<br>Wind loss factor U | or<br>or Uc<br>v   | U = Uc + Uv * Wind vel<br>29.0 W/m <sup>-</sup> K<br>0.0 W/m <sup>-</sup> K m/s | NOCT (<br>often sj<br>itself. T<br>U-value<br>applied | Nominal Opera<br>pecified by mar<br>his is an altern<br>definition whit<br>to the operati | ting Cell tem<br>nufacturers f<br>ative informa<br>ch doesn't ma<br>ng array. | perature<br>or the m<br>ation to t<br>ake sens | ) is<br>odule<br>he<br>e when |                     |
| Default value                                                  | acc. to moun       | ting                                                                            | Don't i<br>confus                                     | use the NOCT<br>ing when ap                                                               | l approach.<br>plied to an                                                    | This is array !                                | quite                         |                     |
| V "Free" mount                                                 | ed modules with    | air circulation                                                                 |                                                       |                                                                                           |                                                                               |                                                |                               |                     |
| Semi-integrat                                                  | ed with air duct   | behind                                                                          |                                                       |                                                                                           |                                                                               |                                                | _                             |                     |
| Integration w                                                  | ith fully insulate | d back                                                                          |                                                       | See t                                                                                     | he NOCT any                                                                   | yway                                           |                               |                     |
|                                                                |                    |                                                                                 |                                                       |                                                                                           |                                                                               |                                                |                               |                     |

Figure 2.12. PVsyst losses

The panel using IAM (Incidence angle modifier) incidence angle losses is coated with AR (anti-reflected) anti-reflector (Figure 2.13. Panel data

sheet). The model of the reflection angle is selected as anti-reflective. Figure 2.14. PVsyst IAM losses. [6]

| Mechanical Data                                                          |                                                                                                |  |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|
| Length × Width × Height 2274 × 1134 × 35mm (89.53 × 44.65 × 1.38 inches) |                                                                                                |  |  |  |  |
| Weight                                                                   | 28.2 Kg (62.17 lbs)                                                                            |  |  |  |  |
| Junction Box                                                             | IP68, Split Junction Box with individual bypass diodes                                         |  |  |  |  |
| Cable & Connectors*                                                      | 200 mm (+ve terminal) and 300 mm (-ve terminal) length cables,MC4<br>Compatible/MC4 Connectors |  |  |  |  |
| Application Class                                                        | Class A (Safety class II)                                                                      |  |  |  |  |
| Superstrate                                                              | 3.2 mm (0.125 inches) high transmission low iron tempered glass, AR coated                     |  |  |  |  |
| Cells                                                                    | 72 Mono PERC (144 half-cells) P-Type solar cells                                               |  |  |  |  |
| Back Sheet                                                               | Composite film                                                                                 |  |  |  |  |
| Frame                                                                    | Anodized aluminium frame with twin wall profile                                                |  |  |  |  |
| Mechanical Load Test                                                     | 5400 Pa (Snow load), 2400 Pa (Wind load)                                                       |  |  |  |  |
| Maximum Series Fuse Rating                                               | 254                                                                                            |  |  |  |  |



Figure 2.13. Panel data sheet

Figure 2.14. PVsyst IAM losses

2.8. Retrieval of the year-round solar horizon line of the region from the Web to the Programme Database The grid connected horizon is defined for Comaklı region by clicking the "Horizon" icon from the variant menu shown in Figure 2.15. PVsyst variant horizon.

| Variant                                                                            | 한 <u>N</u> ew 💾                                                               | Save Import The Delete Manage                       |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|
| Variant n° VCO : Vary                                                              | anti                                                                          | ~                                                   |
| Main parameters<br>Orientation     System     Detailed losses     Self-consumption | Optional<br>Horizon     Near Shadings     Module layout     Energy management | Simulation  Run Simulation  Advanced Simul.  Report |

Figure 2.15. PVsyst variant horizon

In the window that appears, the PVGIS horizon is selected from the Web by clicking the Read/retrieve icon, and the year-round horizon line of the Konya Comaklı power plant region, whose geographical coordinates are automatically retrieved, is imported from the Web. Figure 2.16. PVsyst horizon line legal time.



Figure 2.16. PVsyst horizon line legal time.

#### 2.9. Creating Close Shading 3D Scene

The grid-connected horizon is defined for Comaklı region by pclicking the "Near shadings" icon from the

Variant Menu. Figure 2.17. PVsyst variant near shadings.

| Variant                                                                          |             |                                                                                                  | t New        | Eave Save | Import                                 | Delete                   | 🔯 Manage |
|----------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------|--------------|-----------|----------------------------------------|--------------------------|----------|
| Variant n°                                                                       | VC0 : Varya | ant1                                                                                             |              |           |                                        |                          | $\sim$   |
| Main parameters  Crientation  System  Detailed losses  Self-consumption  Storage |             | Optional<br>Horizon     Near Shadings     Module layout     Energy manager      Economic evaluat | nent<br>tion |           | Simulation<br>Run<br>Advance<br>Report | Simulation<br>ced Simul. |          |

Figure 2.17. PVsyst variant near shadings

In the window that appears, click on the "Construction/Perspective" icon. Then select the table

array from "Create". Figure 2.18. PVsyst near shading 3D scene.

| -Near shadings 3D sce                                                                                | ne                                                                                                                                                                                                     |                                                                                                   |                                         |                                                           |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|
| Comment                                                                                              | New shading scene                                                                                                                                                                                      |                                                                                                   | File Create Select Edit View Teels Help | Scene objects Tools Reference                             |
| Connienc                                                                                             | Construction / Perspec                                                                                                                                                                                 | ive Import                                                                                        |                                         | V Some ubjects<br>Name<br>Operation (0)<br>() Objects (0) |
| Compatibility with<br>Active area<br>Fields tit<br>Fields azimuth<br>Shading factor tab              | Orientation and System parameter         20 scene           Contr. (Pystem         20 scene           11556 m²         12122 m²           36.0°         36.0°           0.0°         0.0°           le |                                                                                                   |                                         |                                                           |
| Use in simulation<br>No Shadings<br>Linear shadings<br>According to moduli<br>Detailed electrical of | e strings<br>alculation (acc. to module layout)                                                                                                                                                        | Calculation mode<br>Pract (table) O Slow (amul.)<br>Praction for electrical effect 100.0 () % (2) |                                         | Y Grap and some                                           |
| Q System overv                                                                                       | iew 🥅 Print                                                                                                                                                                                            | 🗶 Cancel 🗸 OK                                                                                     |                                         | 🗙 Cancel 🗸 Close scene                                    |

Figure 2.18. PVsyst near shading 3D scene

The required surface area of the power plant to be installed on the right side of the opened window is automatically calculated as 11949 m<sup>2</sup>. North-South spacing is the distance between the arrays and is entered as 7m. Panels were used horizontally. Thirty arrays and 2x77 PV modules were designed for each

array length. The panels used are single crystal SOMERA VSMH.72.AAA.05 Half-Cut, and the number of transverse rectangles is 2. The total surface area was calculated as 12123 m2 with 30 arrays X 145 modules. Figure 2.19. PVsyst near shading panel array layout

| Anna bar anie anie a su sera mega i bar aport | Denne per directer at an auto affest Per stort                          |                                                                                            |
|-----------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Description Name Distington                   | Sizes definition     By modules (adjust sizes)     O By sensitive sizes | Electrical shadings calculation<br>Defines the partition in strings of modules. You should |
| Dizi alam                                     | By modules                                                              | define rectangles representing one string of modules                                       |
| Array parameters                              | Reference PV module                                                     | (when possible)                                                                            |
| Nb. of sheds 30 0                             | SOMERA VSMH.72.540.05_P Type                                            | Define partition                                                                           |
| Pitch N-5 7.00 m                              | Module width 1.134 m                                                    | Number of rectangle-strings                                                                |
|                                               | Module length 2.274 m                                                   |                                                                                            |
| Misaign [0.00] m                              | Orientation Landscape V                                                 | no. rectangles in neight (r)                                                               |
| Shed to Shed slope 0.0                        | Nb. of modules in length (X) 27                                         | Nb. rectangles in width (X) 2 C                                                            |
|                                               | Nb. of modules in height (Y)                                            | String sizes                                                                               |
| Limit Angle 14.8 *                            | Modules X spacing 0.02 m                                                | Height of the sectander                                                                    |
| GCR 32.7%                                     | Modules Y spacing                                                       | rieght of the rectanges                                                                    |
| Global sensitive area                         |                                                                         | Length of the rectangles 88.31                                                             |
| Total area 12123.06 m <sup>2</sup>            | Height 2.20 m                                                           | i.e. about 78 modules per rectangle                                                        |
| Required area 11949.77 m <sup>2</sup>         | Length (126.63) m                                                       | Apply the partition to:                                                                    |
| Defined by modules                            | Table area 404.1 m <sup>2</sup>                                         | Cancel al partitions State                                                                 |
| Number of modules 30 sheds x 154 mod. = 4620  | Shed area 12123.06 m*                                                   |                                                                                            |
| Orientation                                   | Required area 11949.77 m <sup>a</sup>                                   | O The selection of tables                                                                  |
| Shed tit 36.0 *                               | Frame around modules                                                    | <ul> <li>All tables of same size</li> </ul>                                                |
| Azimuth 0.0 *                                 | Left/right 0.02 0.02 m                                                  | O All tables of the scene                                                                  |
|                                               | Top/bottom 0.02 0.02 m                                                  |                                                                                            |
| Baseline slope 0.0 C *                        | Outpin I away contar and                                                | C Apply                                                                                    |

Figure 2.19. PVsyst near shading panel array layout

After the shading 3D scene is completed, the design is right corner saved by clicking the "Close scene" icon in the lower shading 3I **3. Simulation Report of Konya Comakli Power Plant in PVsyst** Figure 2.20 and 2.21 shows simulation reports.

right corner of the window. Figure 2.18. PVsyst near shading 3D scene

|                                           |                       |              |                                   |                                                         |                  |                  | PV An             | ray Characte | ristics             | -           |         |          |
|-------------------------------------------|-----------------------|--------------|-----------------------------------|---------------------------------------------------------|------------------|------------------|-------------------|--------------|---------------------|-------------|---------|----------|
|                                           | to ang m              |              | Version 7.2.16                    | PV module                                               |                  |                  |                   | Inv          | erter               |             |         |          |
|                                           |                       |              |                                   | Manufacturer                                            |                  | Vikran           | n Solar Limited   | Ma           | nufacturer          |             |         | Conergy  |
| PROTOVOLTATE SOFT                         |                       |              | 100                               | Model                                                   | 80               | MERA VSMH 72     | 540.05 P Type     | Mo           | del                 |             |         | IPG 270C |
|                                           |                       |              | project                           | (Custom na                                              | rameters definit | tion)            | read in the       |              | (Original PVeuel    | (atabase)   |         | - 5 6199 |
| Ditte                                     | at Circu              | Intinu       |                                   | Linit Nom Down                                          | nameners udimi   | and a            | LED Win           | 164          | Non Dower           | onangogoe j | 220.1   | War      |
| PVs                                       | yst - Simu            | lation i     | eport                             | Number of Dia                                           | not les          |                  | wher of investors |              | 2/01                | units.      |         |          |
|                                           | Grid-Connect          | ed Systen    | n                                 | Nominal (STC)                                           | nooures          | 40               | Units Line Line   | Tel          | al countr           |             | 2460.1  | Was      |
|                                           |                       |              |                                   | Nominal (STC)                                           |                  | 201 Chie         | Ad in cardina     | 105          | a power             |             | 2160    | NYY BC   |
| Project: Konya                            | Comakli 2,5 MV        | / Fotovoltai | k Güneş Santrali                  | Modules                                                 |                  | 331 Strings x    | 14 in series      | Op           | erating voltage     |             | 450-800 | v        |
|                                           | Variant: Va           | aryant1      |                                   | At operating c                                          | ond. (25°C)      |                  |                   | Pho          | m ratio (DC:AC)     | 6           | 1.16    |          |
|                                           | Sheds, sing           | le array     |                                   | Ртрр                                                    |                  | 25               | 502 KWp           |              |                     |             |         |          |
|                                           | System power:         | 2502 kWp     | nrainat                           | U mpp                                                   |                  | 5                | 582 V             |              |                     |             |         |          |
|                                           | Çomaklı -             | Turkey       | LJI LJICELI                       | I mpp                                                   |                  | 42               | 199 A             |              |                     |             |         |          |
| 1 1 2 1 2                                 | - General par         | ameters      |                                   | Total PV now                                            | ior.             |                  |                   | Tel          | al inverter no      | wor         |         |          |
| Grid-Connected System                     | Sheds, single array   |              |                                   | Nominal (STC)                                           |                  | 26               | i02 kWp           | Tet          | al nower            |             | 2160    | Wac      |
| cite comected aystem                      | scheus, angle array   |              |                                   | Total                                                   |                  | 40               | 34 modules        | 100          | mbar of investors   |             | 2100    | units    |
| PV Field Orientation                      | Shada configuration   |              | Medala used                       | Madale area                                             |                  | 40               | Min mit           | nur<br>Der   | cover or inventoria |             | 1 40    |          |
| Eixed plane                               | Nb. of sheds          | 30 units     | Transposition Perez               | woode area                                              |                  | 119              | NOV III.          | Ph           | an raco             |             | 1.10    |          |
| Titl/Azimuth 36 / 0 *                     | Single array          |              | Diffuse Perez, Meteonorm          | Cell area                                               |                  | 110              | 150 mª            |              |                     |             |         |          |
|                                           | Sizes                 |              | Circumsolar separate              |                                                         |                  |                  | 1.1.1             |              |                     |             |         |          |
|                                           | Sheds spacing         | 7.00 m       | ARRAY CONTRACT AND AND A CONTRACT |                                                         |                  |                  |                   | uddan beer   |                     |             |         |          |
|                                           | Collector width       | 2.29 m       | 11                                |                                                         |                  |                  | — A0              | wiring loss  | ies —               |             |         |          |
|                                           | Ground Cov. Ratio (GC | R) 32.7 %    |                                   | the set of the                                          | a sur in taken   | diam and at      |                   |              |                     |             |         |          |
|                                           | Top inactive band     | 0.02 m       | ar 27                             | Inv. output lin                                         | he up to inject  | tion point       |                   |              |                     |             |         |          |
|                                           | Bottom mactive band   | 0.02 m       | nroioot                           | Inverter voltage                                        |                  | 4                | 100 Vac tri       |              |                     |             |         |          |
|                                           | Limit profile angle   | 14.8."       | UTUTEGE                           | Loss Francisco                                          |                  |                  |                   |              |                     |             |         |          |
|                                           |                       |              |                                   | Loss Fraction 0.10 % at PNom                            |                  |                  |                   |              |                     |             |         |          |
| Horizon                                   | Near Shadings         |              | User's needs                      | Inverter: IPG 2                                         | 70C              |                  |                   |              |                     |             |         |          |
| Average negos 1.0                         | According to strings  |              | Command road (Brid)               | Wea sartion (R Inv.) Cremer 8 v 3 v 240 mm <sup>2</sup> |                  |                  |                   |              |                     |             |         |          |
|                                           | Project su            | mmary -      | VI VI VVI                         | the second lo                                           |                  | ooppor o x o x a |                   |              |                     |             |         |          |
| Committee 101                             | Alt when              |              | Destanting                        | Average wires i                                         | ength            |                  | 12 m              |              |                     |             |         |          |
| Geographical Site                         | Situation             |              | Project settings                  |                                                         |                  |                  |                   |              |                     |             |         |          |
| Çomaklı                                   | Lathude               | 37.74 N      | Albedo 0.20                       |                                                         |                  |                  |                   |              |                     |             |         |          |
| Turkey                                    | Longitude             | 32.54 °E     |                                   |                                                         |                  |                  |                   | Array losses |                     |             |         |          |
|                                           | Altitude              | 1011 m       |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
|                                           | Time zone             | UTC+3        |                                   | IAM loss fact                                           | or               |                  |                   |              |                     |             |         |          |
| Natao data                                |                       |              |                                   | Incidence effect                                        | (IAM): Fresnel   | AR coating, n(g) | lass)=1.526, nj   | AR)=1.290    |                     |             |         |          |
| Comakt                                    |                       |              |                                   |                                                         | 1000             |                  | CORNER DATE       | 22572.0105   |                     |             |         |          |
| Volume                                    |                       |              |                                   | 02                                                      | 30'              | 50'              | 60'               | 70*          | 75*                 | 80*         | 85'     | 90*      |
| Meteonorm 8.0 (2003-2013), Sat=% 100 - Se | ntetk                 |              |                                   |                                                         |                  | w                | vv                | 14           | 10                  | 00          | w       | ~        |
|                                           |                       |              |                                   | 1.000                                                   | 0.999            | 0.987            | 0.962             | 0.892        | 0.816               | 0.681       | 0.440   | 0.000    |
| 1000 N N                                  | System su             | immary -     |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
| Grid-Connected System                     | Shade single array    |              | much                              |                                                         |                  |                  |                   |              |                     |             |         |          |
| Gild-Connected system                     | oneus, single array   |              | nrniert                           |                                                         |                  |                  |                   |              |                     |             |         |          |
| PV Field Orientation                      | Near Shadings         |              | User's needs                      |                                                         |                  |                  |                   |              |                     |             |         |          |
| Fixed plane                               | According to strings  |              | Unlimited load (grid)             |                                                         |                  |                  |                   |              |                     |             |         |          |
| Titt/Azimuth 36 / 0 *                     | Electrical effect     | 100 %        |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
|                                           | These and Autom       | 100 10       |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
| System information                        |                       |              |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
| PV Array                                  |                       | Inverters    |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
| Nb. of modules                            | 4634 units            | Nb. of units | 8 units                           |                                                         |                  |                  |                   |              |                     |             |         |          |
| Pnom total                                | 2502 kWp              | Pnom total   | 2160 kWac                         |                                                         |                  |                  |                   |              |                     |             |         |          |
| 1999 (1977) - 1977)                       |                       | Pnom ratio   | 1.159                             |                                                         |                  |                  |                   |              |                     |             |         |          |
|                                           |                       |              | 1.140                             |                                                         |                  |                  |                   |              |                     |             |         |          |
|                                           | Denuite               |              |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
|                                           | - Results su          | annary –     |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
| Produced Energy 4114 MWh/year             | Specific production   | 1644 kWh/kWp | olyear Perf. Ratio PR 81.99 %     |                                                         |                  |                  |                   |              |                     |             |         |          |
|                                           |                       |              |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |
|                                           |                       |              |                                   |                                                         |                  |                  |                   |              |                     |             |         |          |

Figure 2.20. Simulation report data



Figure 2.21. Simulation report diagrams

#### 4. Conclusion and Recommendations

Photovoltaic solar energy systems have become the most preferred renewable energy source due to low facility installation costs, increasing energy production efficiency with the advancement of technology daily, decreasing panel production costs, ease of operation, and maintenance costs.

Compliance with the planned maintenance instructions of the power plant ensures that the plant operates with a longer operating life and performance, achieving maximum energy production and maximizing the interests of customers and investors.

According to the PVSyst simulation report of the 2.5 MW photovoltaic power plant designed in the Comaklı region of Konya province, the nominal power was 2502KWp using 4634 Solar Vikram panels with 540Wp capacity. The panels used were grouped in series as 14 strings and connected in parallel

as 331 strings in each string. While the performance rate was 85% in January, it decreased to 78% in July,

and the annual performance rate was 82% on average. the According to isometric [5] shading azimuth/elevation diagram, the highest sun angle is 750 in July, and the lowest elevation angle is 250 in December. The reason why the performance ratio is lower in summer months compared to winter months is that the heat losses are higher due to the increased air temperature. In the PVSyst simulation program, the annual horizontal irradiation of the Konya Comaklı region is 1769Kwh/m2, and the total energy injected into the grid is 4113,7MWh. [3]

The PVsyst simulation program gives realistic results, and the simulation made using the program before the installation of a solar power plant provides benefits in terms of the amount of energy to be supplied to the grid, the overall performance of the plant, the losses, the selection of the right equipment and the choice of the location where the plant can benefit from the best solar radiation.

#### Author(s) Contributions

LU and OC did the analyses and wrote the article together. Both authors read and approved the final version of the article.

#### **Conflict of Interest**

The authors declare that there is no conflict of interest.

#### References

[1]. Limem, F. (2022) Evaluation of the effectiveness of photovoltaic design/simulation software used in the solar energy sector for Kocaeli province. Master's thesis 765304

[2]. Yilmaz, M (2013). Methods of obtaining electrical energy from solar energy with solar tracking system and determination of optimum efficiency Master's thesis 341350.

[3]. Ceylan, (2017). Investigation of the accuracy of simulation results of photovoltaic programs Master's thesis 487731

[4]. Cekinir, S. (2012). Modeling and Simulation of Photovoltaic Power Systems. Master Thesis, Ege University, Institute of Science and Technology, Izmir, 301878

[5]. Turmuş, A. (2018). Planar Reflectance Assisted Planar Solar Panel Design - Electricity Generation and Efficiency Analysis. Master's Degree, 492723

[6]. Internet: EMO. Solar energy systems losses. URL-8: https://www.emo.org.tr/ekler/38f0038 bf09a40b\_ek.pdf. Last Access Date: 08.10.2023

[7]. Internet: Lighting portal. Recommended solar panel tilt angle. URL-9: https://www.aydinlatma. org/81-il-icin-onerilen-gunes-paneli-egim-acisi.html. Last Access Date: 10.10.2023

[8]. Internet: Field inspection guide for photovoltaic systems. URL: http://brooksolar.com/files/PV-Field-Inspection-Guide-June-2010-F-1.pdf.html. Last Access Date: 10.10.2023